

Tmax, Isomax, Emax: Industrial ${ }^{1 T}$ enabled!
Industrial ${ }^{1 T}$ is the solution developed by ABB for the all-round moulded-case and Emax open circuit breakers has obtained integration of a company's activities, where each product is certification and is fully entitled to join the Protect ${ }^{\text {IT }}$ suite of seen as part of a complete solution. Products and technologies products. These circuit breakers combine with about 700 are grouped into functional categories products in the ArTu M and ArTu K ranges of (Suites), each of which measures, ontrols, optimizes and upports a specific "block" of activities, and they can ensure coordinated interaction thanks to the platform created by ABB (AIP: Aspect Integrator Plafform).

distribution boards, thus enabling complete
switchboards to be assembled using all
Industrial ${ }^{1 T}$-certified components.
Tmax, Isomax and Emax operation can be integrated with the configurable ABB products in a system: this compatibility has always been a fundamental premise of the ABB SACE design process. Mass

In addition to interactivity between certified products, every cerified product also guarantees the ready availability of all the information needed for it to function - technical
characteristics, installation instructions, use and maintenance
instructions, environmental certificates and declarations, all
updated to the latest version ... a considerable advantage for
the user*.
After Tmax, which was the first Industrial ${ }^{[\text {TT}}$-certified ABB
SACE product, now the whole range of Tmax and Isomax
customization, i.e. the mass production of components customized to meet a given buyer's specific needs is already feasible, as IndustrialT ${ }^{\text {IT }}$ certification demonstrates. Yet again, ABB SACE is ahead of the field in offering a better and better customer service!

All product technical data and related documentation can be found in Internet and is accessible to the customer. The standard documentation is in English, but there are local language versions for each country where a given product is marketed.

For further information, go to the Products and services/Industrial ${ }^{l T}$ section on our web site: htrp://www.abb.com

Main characteristics

The ranges

Installations

Overcurrent releases and related accessories

Accessories

Applications of the circuit-breaker

Overall dimensions

Circuit diagrams
FnFt =lत cicculy we open

Where

Innovative by tradition.

The Emax low voltage air circuit-breakers, designed and manufactured by ABB SACE, are the absolute top available on the market today for all applications for functional and qualitative excellency. Nothing comes about by chance: the long tradition of quality, reliability, and care that ABB SACE has always put into the design and production of its cir-
cuit-breakers are the best guarantee for anyone looking for advanced solutions in absolute peace of mind. Simply pass back over the history of ABB SACE air circuitbreakers to see a long series of success stories - fifty years passed in a constant search for innovative and safe solutions and, above all, always those providing top performances.

our sowions.

With this choice, there is no choice.

Whatever the application you have in mind, there is certainly just the apparatus you need for your applications in the ranges of Emax air circuit-breakers. The great appreciation shown by the market for this new series of air circuit-breakers has encouraged introduction of new ranges which go to increase the extensive offer available to date.

The very new 1000 V AC/DC switch-disconnectors
up to 4000 A go to extend the circuit-breakers for special applications up to 1000 V in alternating current. In order to satisfy more specific and up-todate needs, ABB SACE proposes two new Full Size circuit-breakers with neutral conductor with full cross-section, specifically for applications in installations with high harmonic content due to advanced electronic devices.

The high electrical performances of all the Emax ranges go hand in hand with their mechanical and construction characteristics, thought up to provide top quality in all cases The compactness of Emax air circuit-breakers is the fruit of perfect integration of both their components and performances.

Ir solutions.

The strong point - strength.

You can tell Emax air circuit-breakers are solid at a glance. Built with an extremely sturdy metal structure, they deal brilliantly with any dynamic or thermal stresses, making each installation reliable and safe.
its very long life span, only requires minimum maintenance. As always, ABB SACE stands out for the quality of its products, for the care and attention it pays to all details - both constructional or Thanks to the materials used, an Emax air circuit-breaker has a much longer mechanical life compared with the other circuit-breakers in its category, and, during
 technological - to offer the market apparatus which always achieves top performance.

The modern releases Emax can be fitted with make all installations more complete and efficient: the intelligence they are equipped with can carry out many different functions, giving the circuit-breaker high trip precision.

The new intelligence - intelligent.

With Emax air circuit-breakers you can always choose the amount of intelligence you need. Like the latest generation PR113 releases, which carry out a complete set of protection, signalling, data storage and control
functions have been added, with five languages available to help configure the unit. Moreover, setting protection is carried out using a password.

And there are not only protection functions, but also functions. Fitted with a splendid graphic display, these are available both in the dialogue functions, meaning that these releases are able to communicate with the protection only and in the protection plus dialogue versions. The PR112 releases systems, such as the LON ${ }^{\circledR}$ and Modbus ${ }^{\circledR}$ have also been improved and new
 most advanced automation and control protocols.

ABB
 Main characteristics

ContentsOverview of the SACE Emax familyFields of application 1/2
Construction characteristics
Structure of the circuit-breakers $1 / 4$
Operating mechanism 1/5
Operating and signalling parts 1/6
Fixed parts of withdrawable circuit-breakers 1/7
Utilization category 1/8
Versions and connections 1/9
Microprocessor-based overcurrent releases
General specifications 1/10
Versions available 1/11
Current transformer settings 1/13
Compliance with Standards
Standards, approvals and certifications 1/14
A design dedicated to Quality and respect for the environment 1/15

Overview of the SACE Emax family

Fields of application

		E1		E2			
Automatic circuit-breakers		E1B	E1N	E2B	E2N	E2L	
Poles	[No .]				3-4		
Neutral capacity of 4p circuit-breakers	[\% 14$]$				100		
lu ($40{ }^{\circ} \mathrm{C}$)	[A]	800-1250	800-1250	1600-2000	1250-1600-2000	1250-1600	
Ue	[V~]	690	690	690	690	690	
Icu (220...415V)	[kA]	42	50	42	65	130	
Ics (220...415V)	[kA]	42	50	42	65	130	
Icw (1s)	[kA]	36	50	42	55	10	
(3s)	[kA]	36	36	42	42	-	

Automatic circuit-breakers with full-size neutral conductor

Poles	[No.]	
Neutral capacity of 4 p circuit breakers		$[\% \mathrm{lu}]$
Iu	$\left(40^{\circ} \mathrm{C}\right)$	$[\mathrm{A}]$
$\mathbf{U e}$		$[\mathrm{V} \sim]$
Icu	$(220 \ldots 415 \mathrm{~V})$	$[\mathrm{kA}]$
Ics	$(220 \ldots 415 \mathrm{~V})$	$[\mathrm{kA}]$
Icw	$(1 \mathrm{~s})$	$[\mathrm{kA}]$
	$(3 \mathrm{~s})$	$[\mathrm{kA}]$

Construction characteristics

Structure of the circuit-breakers

The sheet steel structure of the circuit-breaker is extremely compact, considerably reducing overall dimensions.
Safety is improved by adopting double insulation for the live parts and total segregation between phases.
The sizes have the same height and depth for all of the circuitbreakers in each version.
The depth of the withdrawable version is suitable for installation of switchboards 500 mm deep.
The width of 324 mm (up to 2000 A) in the withdrawable version allows the equipment to be used in switchboard compartments 400 mm wide. The compact dimensions also allow them to replace air circuit breakers of any size from earlier series.

Construction characteristics

Operating mechanism

The operating mechanism is of the stored energy type, operated using pre-charged springs.
The springs are charged manually by operating the front lever or using a gearmotor, supplied on request.
The opening springs are charged automatically during the closing operation.
With the operating mechanism fitted with shunt closing and opening releases and the gearmotor for charging the springs, the circuit-breaker can be operated by remote control and, if required, co-ordinated by a supervision and control system.

The following operating cycles are possible without recharging the springs:

- starting with the circuit-breaker open (0) and the springs charged closing-opening
- starting with the circuit-breaker closed (I) and the springs charged
opening-closing-opening.
The same operating mechanism is used for the entire series and is fitted with a mechanical and electrical anti-pumping device.

Construction characteristics

Operating and signalling parts

Fixed version

Withdrawable version

Legend

1 Trademark and size of circuitbreaker
2 SACE PR111, PR112 or PR113 Release
3 Pushbutton for manual opening
4 Pushbutton for manual closing
5 Lever to manually charge closing springs
6 Electrical rating plate
7 Mechanical device to signal circuit-breaker open "O" and closed "I"
8 Signal for springs charged or discharged
9 Mechanical signal for protection release tripped
10 Operation counter
11 Key lock in open position
12 Key lock and padlock in racked-in/racked-out position (for withdrawable version only)
13 Racking-in/racking out device (for withdrawable version only)
14 Terminal box (for fixed version only)
15 Sliding contacts (for withdrawable version only)
16 Circuit breaker position indicator: racked-in/ test isolated /racked-out / connected/test isolated/disconnected (for withdrawable version only)
17 Padlock device in open position

Note:

"Racked-in" refers to the position in which both the power contacts and auxiliary contacts are connected; "racked-out" is the position in which both the power contacts and auxiliary contacts are disconnected; "test isolated" is the position in which the power contacts are disconnected, while the auxiliary contacts are connected.

Construction characteristics

Fixed parts of withdrawable circuit-breakers

The fixed parts of withdrawable circuit-breakers have shutters for segregating the fixed contacts when the circuit-breaker is withdrawn from the compartment. These can be locked in their closed position using padlock devices.

Construction characteristics

Utilization category

Selective and current-limiting circuit-breakers

Selective (non current-limiting) circuit-breakers are classified in class B (according to IEC 60947-2 Standard). It is important to know their Icw values in relation to any possible delayed operations in the event of short-circuits.

The current-limiting circuit-breakers E2L and E3L belong to class A. The short-term current Icw is not very important for these circuit-breakers, and is necessarily low due to the operating principle on which they are based. The fact that they belong to class A does not preclude the possibility of obtaining the necessary selectivity (e.g. current-type or time-type selectivity) within the Icw rated short-time withstand current thresholds. The special advantages of current-limiting circuit-breakers are also worthy of emphasis. Indeed, they make it possible to:

- significantly reduce the peak current in relation to the prospective value;
- drastically limit specific let-through energy.

The resultant benefits include:

- reduced electrodynamic stresses;
- reduced thermal stresses;
- savings on the sizing of cables and busbars;
- the possibility of coordinating with other circuit-breakers in the series for back-up or discrimination.

Selective circuit-breaker

E1 B-N, E2 B-N, E3 N-S-H, E4 S-H, E6 H-V

Current-limiting circuit-breaker
E2 L, E3 L

Legend

1 Sheet steel supporting structure
2 Current transformer for protection release
3 Pole group insulating box
$4 \quad$ Horizontal rear terminals
5-5a Plates for fixed main contacts
5b Plates for fixed arc-breaking contacts
6-6a Plates for main moving contacts
6b Plates for moving arcbreaking contacts
7 Arcing chamber
8 Terminal box for fixed version - Sliding contacts for withdrawable version
$9 \quad$ Protection release
10 Circuit-breaker closing and opening control
11 Closing springs

All circuit-breakers are available in fixed and withdrawable, threepole or four-pole versions.
Each series of circuit-breakers offers terminals made of silverplated copper bars in the same sizes, regardless of the rated currents of the circuit-breakers.
The fixed parts for withdrawable circuit-breakers are common to each model, regardless of the rated current and breaking capacity.

Fixed circuit-breaker

Horizontal rear terminals

Vertical rear terminals

Front terminals

Withdrawable circuit-breaker

Horizontal rear terminals

Vertical rear terminals

Front terminals

Flat terminals

Microprocessor-based overcurrent releases

General specifications

The overcurrent protection for AC installations uses three types of microprocessor-based releases in the SACE PR111, PR112 and PR113 series, which can be installed as alternatives to one another on SACE Emax circuit-breakers:

- SACE PR111 with protection functions only
- SACE PR112 with protection, current measurement and dialogue functions
- SACE PR113 with a complete set of functions for protection, measurement, signalling, control and dialogue.
The protection systems can be three-phase or three-phase with neutral depending on the type of circuit-breaker used (three-pole, three-pole with external neutral or four-pole).
The protection system is made up of:
- 3 or 4 current transformers (CT) depending on the number of circuit-breaker poles; the fourth CT may be external
- a protection unit selected from among SACE PR111/P, SACE PR112/P and SACE PR113/P, or a protection and communication unit selected from among SACE PR112/PD with LON ${ }^{\circledR}$ or Modbus ${ }^{\circledR}$ protocol and SACE PR113/PD with Modbus ${ }^{\circledR}$ protocol
- an opening solenoid which acts directly on the circuit-breaker's operating mechanism (supplied with the protection unit).

Microprocessor-based overcurrent releases

Versions available

General specifications of the microprocessor-based releases include:

- operation without the need for an external power supply
- microprocessor technology (8-bit for SACE PR111 and 16-bit for SACE PR112 and PR113)
- high precision
- sensitivity to the true r.m.s. value of the current
- interchangeability among all types of releases
- setting for neutral normally 50% of setting for phases, with possibility of setting it to 100% (on request only for circuit -breakers E1, E2, E3 standard and E4/f, E6/f full-size versions).

For the release PR113, it is also possible to select neutral protection at 150% and 200% of the rated current of the phases, if compatible with the setting of the current transformers. The main performance features of the releases are listed in the tables below.

Microprocessor-based overcurrent releases
Versions available

Features			
Protection functions	PR111	PR112	PR113
L Inverse long time-delay trip overload protection Adjustable-slope curve (IEC 60255-3)	\square	\square	
\$ Selective short-circuit protection with inverse or definite short time-delay trip	■	\square	\square
Instantaneous short-circuit protection with adjustable trip current threshold	\square	\square	\square
G Earth fault protection residual (internal sensor)	\square	\square	\square
G source ground return (external sensor)		\square	\square
D Directional short-circuit protection with adjustable delay			\square
(U) Protection against phase umbalance			\square
(OT) Protection against overtemperature		\square	\square
(UV) OV Undervoltage and overvoltage protection			\square
(iV) Residual voltage protection / neutral displacement protection			\square
(RiP) Reverse power protection			\square
M Thermal memory for L and S functions		\square	\square
Measurements			
Currents (phases, neutral, earth fault)		■	\square
Voltage (phase-phase, phase-neutral, residual)			\square
Power (active, reactive, apparent)			\square
Power factor			\square
Frequency and peak factor			\square
Energy (active, reactive, apparent, counter)			\square
Harmonics calculation (displays waveform and module of the harmonics)			\square
Maintenance events and data			
Events stored in chronological order		\square	\square
Counting number of operations and contact wear		\square	\square
Communication with centralized supervision and control system			
Remote setting of parameters for protection functions, unit configuration and communication		\square	\square
Transmission of measurements, states and alarms from circuit-breaker to system		\square	■
Transmission of maintenance events and data from circuit-breaker to system		\square	\square
Self-test			
Alarm and tripping for release overtemperature		\square	\square
Alarm for microprocessor fault		\square	\square
User interface			
Parameters set using DIP switches	■		
Parameters set using keys and liquid crystal display		■	\square
Alarm signals for L, S, I and G functions		■	\square
Alarm signalling one of the following protections: undervoltage, overvoltage, residual voltage, reverse power			\square
Imbalance phase and overtemperature signal		■	\square
Complete management of pre-alarms and alarms for all protection and self-monitoring functions		■	\square
Password for use with "READ" or "EDIT" mode		\square	\square
Load control			
Connection-disconnection of loads in relation to the current flowing through the circuit-breaker		\square	\square
Zone selectivity			
May be activated for protection functions S or G		\square	
May be activated for protection functions S, G or D			\square
Number of programmable contacts		1	2
Start-up function S, D, I and G			\square

Microprocessor-based overcurrent releases

Setting the current transformers

Type of circuit-breaker	Rated current lu	R250	R400	R800	R1000	R1250	R1600	R2000	R2500	R3200	R4000	R5000	R6300
$\begin{aligned} & \text { E1B } \\ & \text { E1N } \end{aligned}$	800												
	1250												
E2B	1600												
	2000												
E2N	1250												
	1600												
	2000												
E2L	1250												
	1600												
E3N	2500												
	3200												
$\begin{aligned} & \text { E3S } \\ & \text { E3H } \end{aligned}$	1250												
	1600												
	2000												
	2500												
	3200												
E3L	2000												
	2500												
E4S	4000												
E4H	3200												
	4000												
E4S/f	4000												
E6H	5000												
	6300												
E6H/f	5000												
	6300												
E6V	3200												
	4000												
	5000												
	6300												

Compliance with Standards

Standards, approvals and certifications

SACE Emax circuit-breakers and their accessories meet the international standards IEC 60947, EN 60947 (harmonized in 17 CENELEC countries), CEI EN 60947 and IEC 61000, and comply with EC directive:

- "Low Voltage Directive" (LVD) nr. 73/23 EEC
_ "Electromagnetic Compatibility Directive" (EMC) nr. 89/336 EEC.
The main versions of the equipment are approved by the following Shipping Registries:
- RINA (Registro Italiano Navale)
- Det Norske Veritas
- Bureau Veritas
- Germanischer Lloyd
- Loyd's Register of Shipping
- Polskj Reiestr Statkow
- Gost
- ABS (American Bureau of Shipping)
- NK

Certification of conformity with the aforementioned product Standards is carried out in compliance with European Standard EN 45011 by the Italian certification body ACAE (Associazione per la Certificazione delle Apparecchiature Elettriche - Association for the Certification of Electrical Equipment), recognized by the European organization LOVAG (Low Voltage Agreement Group).
approved types of circuit breakers, approved performance data and the corresponding validity

Compliance with Standards

A design dedicated to Quality and respect for the environment

Quality has always been the leading commitment of ABB SACE. This commitment involves every function of the company, and has allowed us to achieve prestigious recognition internationally.

The company's Quality System is certified by RINA, one of the most prestigious international certification boards, and complies with ISO 9001 Standards; the ABB SACE test facility is accredited by SINAL; the plants in Frosinone, Patrica, Vittuone and Garbagnate Monastero are also certified in compliance with OHSAS 18001 Standards for workplace health and safety. ABB SACE, Italy's first industrial company in the electro-mechanical sector to achieve this, has been able to reduce its raw material consumption and machining scrap by 20% thanks to an ecology-centred revision of its manufacturing process. All of the company's Divisions are involved in streamlining raw material and energy consumption, preventing pollution, limiting noise pollution and reducing scrap resulting from manufacturing processes, as well as to carrying out periodic environmental audits of leading suppliers.

ABB SACE is committed to environmental protection, as also evidenced by the Life Cycle Assessments (LCA) of products carried out at the Research Center: thus assessments and improvements of the environmental performance of products throughout their life cycle are included right from the initial engineering stage. The materials, processes and packaging used are chosen with a view to optimizing the actual environmental impact of each product, including its energy efficiency and recyclability.

ENVIRONMENTAL MANAGEMENT SYSTEM CERTIFIED

AB The Ranges

Contents

\qquadAutomatic circuit-breakers with full-size neutral conductor2/4
Switch-disconnectors 2/5
Automatic circuit-breakers for applications up to 1000 V AC 2/6
Switch-disconnectors for applications up to 1000 V AC 2/7
Switch-disconnectors for applications up to 1000V DC 2/8
Sectionalizing truck 2/9
Earthing switch with making capacity 2/10
Earthing truck 2/11
Other versions 2/11

SACE Emax automatic circuit-breakers

Shared specifications	
Voltages	
Rated service voltage Ue	[V] 690 ~
Rated insulation voltage Ui	[V] 1000
Rated impulse withstand voltage Uimp	[kV] 12
Test voltage at industrial frequency for 1 minute	[V] 3500 ~
Service temperature	$\left[{ }^{\circ} \mathrm{C}\right]-25 \ldots+70$
Storage temperature	[$\left.{ }^{\circ} \mathrm{C}\right] \quad-40 \ldots+70$
Frequency f	[Hz] 50-60
Number of poles	3-4
Versions	Fixed - Withdrawable

		틀		F2		
Performance levels		B	N	B	N	L
Currents						
Rated uninterrupted current (at $40^{\circ} \mathrm{C}$) lu	[A]	800	800	1600	1250	1250
	[A]	1250	1250	2000	1600	1600
	[A]				2000	
	[A]					
	[A]					
Capacity of neutral pole on four-pole circuit-breakers	[\%lu]	100	100	100	100	100
Rated ultimate short-circuit breaking capacity Icu						
220/230/380/400/415 V ~	[kA]	42	50	42	65	130
440 V ~	[kA]	42	50	42	65	110
500/660/690 V ~	[kA]	36	36	42	55	85
Rated service short-circuit breaking capacity Ics						
220/230/380/400/415 V ~	[kA]	42	50	42	65	130
440 V ~	[kA]	42	50	42	65	110
500/660/690 V ~	[kA]	36	36	42	55	65
Rated short-time withstand current Icw	[kA]	36	50	42	55	10
		36	36	42	42	-
Rated short-circuit making capacity (peak value) Icm						
220/230/380/400/415 V ~	[kA]	88,2	105	88,2	143	286
440 V ~	[kA]	88,2	105	88,2	143	242
500/660/690 V ~	[kA]	75,6	75,6	88,2	121	187
Utilisation category (in accordance with IEC 60947-2)		B	B	B	B	A
Isolation behavior (in accordance with IEC 60947-2)		\square	\square	\square	■	■
Overcurrent protection						
Microprocessor-based releases for AC applications		■	■	■	■	■
Operating times						
Closing time (max)	[ms]	80	80	80	80	80
Break time for I<lcw (max) ${ }^{(1)}$	[ms]	70	70	70	70	70
Break time for I>low (max)	[ms]	30	30	30	30	12
Overall dimensions						
Fixed: $\mathrm{H}=418 \mathrm{~mm}-\mathrm{D}=302 \mathrm{~mm} \mathrm{~L} \mathrm{(} 3 / 4$ poles)	[mm]		386		296/386	
Withdrawable: H = 461 mm - D $=396.5 \mathrm{~mm} \mathrm{~L} \mathrm{(} 3 / 4$ poles)	[mm]		414		324/414	
Weights (circuit-breaker complete with releases and CT, not including accessories)						
Fixed 3/4 poles	[kg]	45/54	45/54	50/61	50/61	52/63
Withdrawable $3 / 4$ poles (including fixed part)	[kg]	70/82	70/82	78/93	78/93	80/95

(1) Without intentional delays
(2) Performance at 600 V is 100 kA
(3) Performance at 500 V is 100 kA

		ㄷ1 B-N		F2 B-N			=2	
Rated uninterrupted current (a $40{ }^{\circ} \mathrm{C}$) lu	[A]	800	1250	1250	1600	2000	1250	1600
Mechanical life with regular routine maintenance	[No. operations x 1000]	25	25	25	25	25	20	20
Frequency	[Operations per hour]	60	60	60	60	60	60	60
Electrical life	[No. operations x 1000]	10	10	15	12	10	4	3
	[No. operations x 1000]	10	8	15	10	8	3	2
Frequency	[Operations per hour]	30	30	30	30	30	20	20

Automatic circuit-breakers with full-size neutral conductor

The Emax range of automatic circuit-breakers with full-size neutral conductor is used in special applications where the presence of triple-N harmonics on individual phases may lead to a very high current on the neutral conductor.
Typical applications include installations with loads having high harmonics distortion (computers and electronic devices in general), lighting systems with a large number of fluorescent lamps, systems with inverters and rectifiers, UPS, systems for adjusting the speed of electric motors.
This range includes standard circuit-breakers with full-size neutral conductor in sizes E1, E2, E3. Models E4 and E6 are available in the "Full size" version up to rated currents of 6300A. Models E4/f and E6/f are available in fixed and withdrawable four-pole versions. These models may be fitted with all accessories available for the Emax range; the exception, on the E6/f model, are the mechanical interlocks made using flexible wires and 15 external auxiliary contacts, which are therefore incompatible.
All the models may be fitted with all available versions of electronic protection relays, in the standard version.

		E4S/f	E6H/f
Rated uninterrupted current (at $40^{\circ} \mathrm{C}$) lu	[A]	4000	5000
	[A]		6300
Number of poles		4	4
Rated service voltage Ue	[V ~]	690	690
Rated ultimate short-circuit breaking capacity Icu			
220/230/380/400/415 V ~	[kA]	80	100
440 V ~	[kA]	80	100
500/660/690 V ~	[kA]	75	100
Rated service short-circuit breaking capacity Ics			
220/230/380/400/415 V ~	[kA]	80	100
440 V ~	[kA]	80	100
500/660/690 V ~	[kA]	75	100
Rated short-time withstand current Icw			
(1s)	[kA]	80	100
(3s)	[kA]	75	85
Rated short-circuit making capacity (peak value) lcm	[kA]	176	220
Application category (in accordance with IEC 60947-2)		B	B
Isolation behavior (in accordance with IEC 60947-2)		\square	\square
Overall dimensions			
Fixed: $\mathrm{H}=418 \mathrm{~mm}-\mathrm{D}=302 \mathrm{~mm} \mathrm{~L}$	[mm]	746	1034
Withdrawable: H = 461-D = 396.5 mm L	[mm]	774	1062
Weights (circuit-breaker complete with releases and CT, not including accessories)			
Fixed	[kg]	120	165
Withdrawable (including fixed part)	[kg]	170	250

Switch-disconnectors

The switch-disconnectors are derived from the corresponding automatic circuit-breakers, of which they maintain the overall dimensions and the possibility of mounting accessories.
This version differs from the automatic circuit-breakers only in the absence of overcurrent releases.
The circuit-breaker is available in both fixed and withdrawable versions, three-pole and fourpole. The switch-disconnectors, identified by the label "/MS", may be used according to the category of use AC-23A (switching motor loads or other highly inductive loads) in accordance with the standard IEC 60947-3. The electrical specifications of the switch-disconnectors are listed in the table below.

		E1B/MS	E1N/MS	E2B/MS	E2NMS	E3N/MS	E3S/MS	E4S/MS	E4S/iMS	E4HMS	E6H/MS	E6H/f MS
Rated uninterrupted current (a $40^{\circ} \mathrm{C}$) lu	[A]	800	800	1600	1250	2500	1250	4000	4000	3200	5000	5000
	[A]	1250	1250	2000	1600	3200	1600			4000	6300	6300
	[A]				2000		2000					
	[A]						2500					
	[A]						3200					
Rated service voltage Ue	[V ~]	690	690	690	690	690	690	690	690	690	690	690
	[V-]	250	250	250	250	250	250	250	250	250	250	250
Rated insulation voltage Ui	[V ~]	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Rated impulse withstand voltage Uimp	[kV]	12	12	12	12	12	12	12	12	12	12	12
Rated short-time withstand current Icw $\frac{(1 s)}{(3 s)}$	[kA]	36	50	42	55	65	75	75	80	100	100	100
	[kA]	36	36	42	42	65	65	75	75	75	85	85
Rated short-circuit making capacity (peak value) lcm												
220/230/380/400/415/440 V ~	[kA]	75,6	105	88,2	121	143	165	165	176	220	220	220
500/660/690 V ~	[kA]	75,6	75,6	88,2	121	143	165	165	165	187	220	220

Automatic circuit-breakers for applications up to 1000V AC

SACE Emax circuit-breakers may be supplied in a special version for rated service voltages up to 1000 V in AC.
Circuit-breakers in this version are identified by the label of the standard range (rated service
 voltage up to 690 V AC) plus " $/ E$ ", and are derived from the corresponding standard SACE Emax circuit-breakers. They offer the same versions and accessories as the latter. The SACE Emax range of circuit-breakers for applications up to 1000 V in AC may be either fixed and withdrawable, in both three-pole and four-pole versions. SACE Emax/E circuit-breakers are especially suitable for installation in mines, oil and chemical plants, and for traction.
The table below shows the electrical specifications of the range.

		E2B/E		E2N/E			E3H/E					E4H/E	
Rated uninterrupted current (at $40{ }^{\circ} \mathrm{C}$) lu	[A]	1600	2000	1250	1600	2000	1250	1600	2000	2500	3200	3200	4000
Rated service voltage Ue	[V~]	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Rated ultimate short-circuit breaking capacity Icu	[kA]	20	20	30	30	30	50	50	50	50	50	65	65
Rated service short-circuit breaking capacity Ics	[kA]	20	20	30	30	30	50	50	50	50	50	65	65
Rated short-time withstand current Icw (1s)	[kA]	20	20	30	30	30	50	50	50	50	50	65	65

Switch-disconnectors for applications up to 1000V AC

The switch-disconnectors complete the range of equipment for applications at 1000 V in alternating current (AC). These circuit-breakers meet international IEC standard 60947-3.
Circuit-breakers in this version are identified by the label of the standard range, where the rated service voltage is up to 690 V AC, plus "/E", thus becoming SACE Emax/E MS. They are derived from the corresponding standard SACE Emax switch-disconnectors.
They are available in three-pole and four-pole, both in the fixed and withdrawable versions in the same sizes, accessory options and installations as the corresponding standard circuit-breakers. All accessories available for the SACE Emax range may be used. Standard fixed parts may also be used for circuit-breakers in the withdrawable version.

		E2B/E MS	E2N/E MS	E3H/E MS	EAH/E MS
Rated uninterrupted current (at $40^{\circ} \mathrm{C}$) lu	[A]	1600	1250	1250	3200
	[A]	2000	1600	1600	4000
	[A]		2000	2000	
	[A]			2500	
	[A]			3200	
Number of poles		3/4	3/4	3/4	3/4
Rated AC service voltage Ue	[V]	1000	1000	1000	1000
Rated AC insulation voltage Ui	[V]	1000	1000	1000	1000
Rated impulse withstand voltage Uimp	[kV]	12	12	12	12
Rated short-time withstand current Icw (1s)	[kA]	20	30	50	65
Rated making capacity Icm 1000 VAC (peak value)	[kA]	40	63	105	143

Switch-disconnectors for applications up to 1000V DC

ABB SACE has developed the SACE Emax/E MS range of switch-disconnectors for applications in direct current up to 1000 V in compliance with international standard IEC60947-3. These nonautomatic circuit-breakers are especially suitable for use as busbar links or main isolators in
 direct current systems, such as for applications involving electric traction. The range covers all installation needs up to 1000V DC / 3200A or up to 750V DC/ 4000A. They are available in fixed and withdrawable versions, three-pole and four-pole.
By connecting three breaking poles in series, it is possible to achieve a rated insulation voltage of 750 V DC, while with four poles in series the limit rises to 1000 V DC.
The switch-disconnectors of the SACE Emax/E MS range maintain the overall dimensions and fastening points of the standard range circuit-breakers. They may be fitted with the various terminal kits and all accessories common to the SACE Emax range. They may obviously not be associated with the electronic releases, CT and with the current detection and protection accessories for AC applications.
The withdrawable circuit-breakers should be used together with the special version fixed parts for applications at 750/1000V DC.

			E1B/E MS		E2N/E MS		E3H/E MS		E4H/E MS
Rated uninterrupted current (at $40{ }^{\circ} \mathrm{C}$) lu		[A]	800		1250		1250		3200
		[A]	1250		1600		1600		4000
		[A]			2000		2000		
		[A]			2500				
		[A]			3200				
Number of poles			3	4	3	4	3	4	3
Rated AC service voltage Ue		[V]	750	1000	750	1000	750	1000	750
Rated AC insulation voltage Ui		[V]	1000	1000	1000	1000	1000	1000	1000
Rated impulse withstand voltage Uimp		[kV]	12	12	12	12	12	12	12
Rated short-time withstand current Icw (1s)		[kA]	20	20	25	25	40	40	65
Rated making capacity Icm	750 V DC	[kA]	20	20	25	25	40	40	65
	1000 V DC		-	20	-	25	-	40	-

Sectionalizing truck

Sectionalizing truck - CS

This version is derived from the corresponding withdrawable circuit-breaker, replacing all of the circuit breaking parts and operating mechanism with simple connections between the upper and lower contacts.
It is used as a no load isolator where required by the system.

Earthing switch with making capacity - MTP

This version is based on the mobile part of the corresponding withdrawable circuit-breaker (without overcurrent releases) and the top or bottom isolating contacts, which are replaced with connections that short circuit the phases to earth through the circuit-breaker. The earthing switch is available with top or bottom isolating contacts.
The earthing circuit is dimensioned for a short-time current equal to 60% of the maximum Icw of the circuit-breaker from which it is derived (IEC 60439-1).
The earthing switch is inserted in the fixed part of a withdrawable circuit-breaker to earth the top or bottom terminals before carrying out inspection or maintenance operations on the external circuit in safety conditions. It should be used in cases where the installations to be earthed may produce residual or recovery voltages.

Earthing truck

Other versions

Earthing truck- MT

This version is similar to the sectionalizing truck, but with the bottom or top isolating contacts replaced by short-circuited, earthed connections. The earthing truck is available with bottom or top isolating contacts, suitable for the fixed part of the size.
The earthing circuit is dimensioned for a short-time current equal to 60% of the maximum Icw of the circuit-breaker from which it is derived (IEC 60439-1).
The truck is temporarily racked into the fixed part of a withdrawable circuit-breaker to earth the top or bottom terminals before carrying out maintenance operations on the external circuit when no residual voltages are expected.

Other versions

Upon request, SACE Emax circuit breakers may be built in special versions designed for particularly aggressive environments (SO2 / H2S) and for seismic installations.

ABB
 Installations

Contents

Installation in switchboards
\qquad
Choosing the type of circuit breaker .. 3/3
Current carrying capacity in switchboards ... 3/6

Change in the rated uninterrupted current in relation to temperature
Temperature derating ... 3/7

Derating in altitude .. 3/12

Current-limiting and specific let-through energy curves for circuit-breakers E2L and E3L3/13

Installation in switchboards

Modular design

The circuit-breakers in the SACE Emax series have been built to modular design criteria for easier installation and integration in Low Voltage electrical switchboards, giving them the same depth and height for every model while simultaneously achieving a significant reduction in their overall installation dimensions.
The front shield of the circuit-breaker is also identical for the entire series. This simplifies the construction of the switchboard doors since only one type of drilling is required and makes the front of the switchboard the same for all sizes.
SACE Emax circuit-breakers are suitable for Power Center switchboards and make it easy to comply with the segregation requirements of the IEC 60439-1 standards.

Installation in switchboards

Choosing the type of circuit breaker

Number of poles

The choice of the number of poles for circuit-breakers that simultaneously provide switching, protection and isolation functions in three-phase installations depends on the type of electrical system (TT, TN-S, TN-C, IT) and the type of user or, more generally, whether it features a distributed or non-distributed neutral.

Three-pole circuit breakers

For TN-C systems (the neutral cannot be interrupted because it also acts as the protection conductor).

For users that do not use the neutral (e.g.: asynchronous motors) and, for systems with nondistributed neutral in general.

Four-pole circuit breakers

In all other instances, with exceptions for the IT system (see CEI Standards 64-8/ 473.3.2.2).

Three-pole circuit breakers with external neutral

Current transformers can be installed on the external neutral of five-wire systems (TN-S) with 3-pole circuit-breakers.

Fixed or withdrawable version

The fixed version of the circuit-breaker is more compact in size than the withdrawable version. It is recommended for installations that can tolerate service interruptions in the event of faults or routine maintenance.
The withdrawable version of the circuit-breaker is recommended for:

- applications that can only tolerate brief interruptions due to faults or routine maintenance:
- dual lines, one of which is a standby for the other, with a single circuit-breaker for each pair.

Installation in switchboards

Choosing the type of circuit breaker

Connecting the main circuit-breaker circuits

When designing switchboards, one must always bear in mind the problem of making the most rational connections between the circuit-breaker and main busbar system and the busbars to the users. The SACE Emax series offers switchboard analysts a range of options to satisfy different circuit-breaker connection requirements.
The figures alongside here show a number of indications for terminal selection.

For switchboards with access from the rear

For switchboards with access from the rear

For wall-mounted switchboards, with access from the front only

Flat rear terminals

(withdrawable version only) For switchboards with access from the rear

Protection degrees

A number of solutions have been adopted on SACE Emax cir-cuit-breakers to achieve IP22 protection degree for fixed or withdrawable circuit-breakers, not including their terminals, and IP30 for their front parts using a flange. Automatic shutters have been designed for the fixed parts of withdrawable circuit-breakers which can be locked using padlock devices to allow maintenance of the load side or power-supply side of the fixed part. A transparent protective cover is also available upon request, to completely segregate the front of the circuit breaker with a protection degree of IP54. The front panel and protection release, as well as their indicators, still remain completely visible.
IP22 Fixed or withdrawable circuit-breaker, not including terminals.
IP30 Front parts of circuit-breakers (using flange).
IP54 Fixed or withdrawable circuit-breaker, fitted with transparent protective cover to be fastened to the front of the switchboard (on request).

Power losses

The IEC 439-1 and CEI EN 60439-1 standards prescribe calculations for determining the heat dissipation of ANS (non-standard) switchboards which require the engineer to consider the following:

- the overall dimensions
- the rated current of the busbars and connections and their power loss values
- the power loss of the switchgear fitted in the switchboard.
For the latter, the following table provides information on the circuit-breakers. Where other equipment is concerned, please consult the catalogues of the relative manufacturers.

Power loss			
Circuit breaker	lu $[A]$	Fixed 3/4 Poles [W]	Withdrawable 3/4 Poles [W]
E1 B-N	800	65	95
	1250	150	230
E2 B-N	1250	70	130
	1600	115	215
	2000	180	330
E2 L	1250	105	165
	1600	170	265
E3 N-S-H	1250	60	90
	1600	85	150
	2000	130	225
	2500	205	350
	3200	330	570
E3 L	2000	215	330
	2500	335	515
E4 S-H	3200	235	425
	4000	360	660
E6 H-V	3200	170	290
	4000	265	445
	5000	415	700
	6300	650	1100

Note

The table values refer to balanced loads, a current flow of Iu, and automatic circuitbreakers.

Note

The same standards prescribe type tests for AS switchboards (standard factory manufactured switchgear), including those for maximum temperature rise.

Installation in switchboards

Current carrying capacity in switchboards

The following table lists examples of the continuous current carrying capacity for circuit breakers installed in a switchboard with the dimensions indicated below.
These values refer to withdrawable switchgear installed in nonsegregated switchboards with a protection rating of up to IP31, and the following dimensions:
2300x800x900 (HxLxD) for E1 - E2 - E3;
$2300 \times 1400 \times 1500$ (HxLxD) for E4 - E6.
The values refer to a maximum temperature at the terminals of $120^{\circ} \mathrm{C}$.
For withdrawable circuit-breakers with a rated current of 6300A, the use of vertical rear terminals is recommended.

Note:

The tables should be used solely as a general guideline for selecting products. Due to the extensive variety of
switchboard formats and conditions that may affect the behavior of the equipment switchboard, solutions must always be fested in the actual installation.

Type	$\begin{gathered} \text { lu } \\ {[\mathrm{A}]} \end{gathered}$	Vertical terminals				Horizontal and front terminals			
		Continuous capacity [A]			Busbars section [mm^{2}]	Continuous capacity$[\mathrm{A}]$			Busbars section [mm^{2}]
		$35^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$		$35^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	
E1B/N 08	800	800	800	800	1x(60x10)	800	800	800	1x(60x10)
E1B/N 12	1250	1250	1250	1250	$1 \times(80 \times 10)$	1250	1250	1200	$2 \times(60 \times 8)$
E2N 12	1250	1250	1250	1250	1x(60x10)	1250	1250	1250	1x(60x10)
E2B/N 16	1600	1600	1600	1600	$2 \times(60 \times 10)$	1600	1600	1530	$2 \times(60 \times 10)$
E2B/N 20	2000	2000	2000	1800	$3 \times(60 \times 10)$	2000	2000	1750	$3 \times(60 \times 10)$
E2L 12	1250	1250	1250	1250	$1 \times(60 \times 10)$	1250	1250	1250	1x(60x10)
E2L 16	1600	1600	1600	1500	$2 \times(60 \times 10)$	1600	1490	1400	$2 \times(60 \times 10)$
E3S/H 12	1250	1250	1250	1250	1x(60x10)	1250	1250	1250	1x(60x10)
E3S/H 16	1600	1600	1600	1600	1x(100x10)	1600	1600	1600	$1 \times(100 \times 10)$
E3S/H 20	2000	2000	2000	2000	$2 \times(100 \times 10)$	2000	2000	2000	$2 \times(100 \times 10)$
E3N/S/H 25	2500	2500	2500	2500	$2 \times(100 \times 10)$	2500	2490	2410	$2 \times(100 \times 10)$
E3N/S/H 32	3200	3200	3100	2800	$3 \times(100 \times 10)$	3000	2880	2650	$3 \times(100 \times 10)$
E3L 20	2000	2000	2000	2000	2x(100x10)	2000	2000	1970	$2 \times(100 \times 10)$
E3L 25	2500	2500	2390	2250	$2 \mathrm{x}(100 \times 10)$	2375	2270	2100	$2 \times(100 \times 10)$
E4H 32	3200	3200	3200	3200	$3 \times(100 \times 10)$	3200	3200	3020	$3 \times(100 \times 10)$
E4S/H 40	4000	4000	3980	3500	$4 \times(100 \times 10)$	3600	3510	3150	$6 \times(60 \times 10)$
E6V 32	3200	3200	3200	3200	$3 \times(100 \times 10)$	3200	3200	3200	$3 \times(100 \times 10)$
E6V 40	4000	4000	4000	4000	$4 \times(100 \times 10)$	4000	4000	4000	$4 \times(100 \times 10)$
E6H/V 50	5000	5000	4850	4600	6x(100x10)	4850	4510	4250	$6 \times(100 \times 10)$
E6H/V 63	6300	6000	5700	5250	7x(100x10)	-	-	-	-

Changing the rated uninterrupted current in relation to temperature

Temperature derating

The circuit-breakers may operate at higher temperatures than their reference temperature $\left(40^{\circ} \mathrm{C}\right)$ in certain installation conditions. In these cases the current-carrying capacity of the switchgear should be reduced.
The SACE Emax series of air circuit-breakers uses microproc-essor-based electronic releases that offer the benefit of great operating stability when subjected to temperature changes. The tables below show the current-carrying capacities of the circuit breakers (as absolute values and percentage values) in relation to their rated values at $\mathrm{T}=40^{\circ} \mathrm{C}$.

SACE Emax E1

Temperature $\left[{ }^{\circ} \mathrm{C}\right]$	$\%$	$[\mathrm{E} 1800$	E 11250	
	100	800	100	1250
20	100	800	100	1250
30	100	800	100	1250
40	100	800	100	1250
45	100	800	100	1250
50	100	800	100	1250
55	100	800	100	1250
60	100	800	100	1250
65	100	800	99	1240
70	100	800	98	1230

Changing the rated uninterrupted current in relation to temperature

Temperature derating

SACE Emax E2

Temperature $\left[{ }^{\circ} \mathrm{C}\right]$	E 21250		E2 1600		E2 2000	
	$\%$	$[A]$	$\%$	$[A]$	$\%$	$[A]$
20	100	1250	100	1600	100	2000
30	100	1250	100	1600	100	2000
40	100	1250	100	1600	100	2000
45	100	1250	100	1600	100	2000
50	100	1250	100	1600	100	2000
55	100	1250	100	1600	97	1945
60	100	1250	100	1600	94	1885
65	100	1250	98	1570	91	1825
70	100	1250	96	1538	88	1765

SACE Emax E3

Temperature $\left[C^{\circ}\right]$	E3 1250		E3 1600		E3 2000		E3 2500		E3 3200	
	100	1250	100	1600	100	2000	100	2500	100	3200
20	100	1250	100	1600	100	2000	100	2500	100	3200
30	100	1250	100	1600	100	2000	100	2500	100	3200
40	100	1250	100	1600	100	2000	100	2500	100	3200
45	100	1250	100	1600	100	2000	100	2500	100	3200
50	100	1250	100	1600	100	2000	100	2500	97	3090
55	100	1250	100	1600	100	2000	100	2500	93	2975
60	100	1250	100	1600	100	2000	100	2500	89	2860
65	100	1250	100	1600	100	2000	97	2425	86	2745
70	100	1250	100	1600	100	2000	94	2350	82	2630

Changing the rated uninterrupted current in relation to temperature

Temperature derating

SACE Emax E4

Temperature [$\left.{ }^{\circ} \mathrm{C}\right]$	E4 3200		E4 4000	
	\%	[A]	\%	[A]
10	100	3200	100	4000
20	100	3200	100	4000
30	100	3200	100	4000
40	100	3200	100	4000
45	100	3200	100	4000
50	100	3200	98	3900
55	100	3200	95	3790
60	100	3200	92	3680
65	98	3120	89	3570
70	95	3040	87	3460

SACE Emax E6

Temperature	E 63200		E 64000		E 65000		E 66300	
	$\%$	$[\mathrm{~A}]$	$\%$	$[\mathrm{~A}]$	$\%$	$[\mathrm{~A}]$	$\%$	$[\mathrm{~A}]$
10	100	3200	100	4000	100	5000	100	6300
20	100	3200	100	4000	100	5000	100	6300
30	100	3200	100	4000	100	5000	100	6300
40	100	3200	100	4000	100	5000	100	6300
45	100	3200	100	4000	100	5000	100	6300
50	100	3200	100	4000	100	5000	100	6300
55	100	3200	100	4000	100	5000	98	6190
60	100	3200	100	4000	98	4910	96	6070
65	100	3200	100	4000	96	4815	94	5850
70	100	3200	100	4000	94	4720	92	5600

Derating in altitude

SACE Emax air circuit-breakers do not undergo any changes in their rated performance up to an altitude of 2000 meters. As the altitude increases the atmospheric properties alter in terms of composition, dielectric capacity, cooling power and pressure.
The performance of the circuit-breakers therefore undergoes derating which can be measured through the variation in significant parameters such as the maximum rated voltage of operation and the rated uninterrupted current.
The table below shows the aforementioned values in relation to altitude.

Altitude	H	$[\mathrm{m}]$	<2000	3000	4000	5000
Rated service voltage	Ue	$[\mathrm{V}]$	690	600	500	440
Rated current	In	$[\mathrm{A}]$	In	$0,98 \times \ln$	$0,93 \times \ln$	$0,90 \times \ln$

Current-limiting and specific let-through energy curves for circuit-breakers E2L and E3L

The current-limiting capacity of an automatic current-limiting circuit-breaker indicates its ability to let through or determine a current lower than the prospective fault current in short-circuit conditions. This characteristic is represented by two different curves which indicate the following, respectively:

- the value of the specific energy " $\left.\right|^{2}$ t" (in $A^{2} s$) let through by the circuit-breaker in relation to the uninterrupted symmetrical short-circuit current.
- the peak value (in kA) of the limited current in relation to the uninterrupted symmetrical short-circuit current.

The graph shown here schematically indicates the pattern of uninterrupted current, with its established peak (curve B), and the pattern of limited current with a lower peak value (curve A).
Comparing the areas beneath the two curves shows how the specific let-through energy is reduced as a result of the limiting effects of the circuit breaker.

Current-limiting and specific let-through energy curves for circuit-breakers E2L and E3L

E2L

Current-limiting curves

E2L

Specific let-through energy curves

Is prospective symmetrica short-circuit current
Ip peak current
$\mathbf{I}^{2} \mathbf{t}$ specific let-through energy at the voltages indicated

E3L
 Current-limiting curves

E3L

Specific let-through energy curves

Is prospective symmetrical short-circuit current
Ip peak current
$\mathbf{I}^{2} \mathbf{t}$ specific let-through energy at the voltages indicated

Overcurrent releases and related accessories

Contents
Microprocessor-based protection releases and trip curves
PR111/P 4/2

PR112/P 4/8

PR113/P \qquad 4/16

Protection and dialogue releases for LonWorks ${ }^{\circledR}$ and Modbus ${ }^{\circledR}$ networks
PR112/PD and PR113/PD \qquad 4/31

Accessories for protection releases
SACE PR120/B power supply unit \qquad 4/35

SACE TT1 test unit \qquad 4/35

SACE PR010/T configuration test unit \qquad 4/35 SACE PR020/K signalling unit \qquad 4/37

Microprocessor-based protection releases and trip curves
PR111/P

Characteristics

This is the basic release for the Emax series. The complete range of protection functions and the variety of thresholds and trip times offered make it suitable for protecting any type of alternating current installation. The release does not have any additional functions over and above its protection functions, except a few signals.

Legend

1 Alarm indicator LED for protection function L

2 DIP switches for setting current threshold I1
3 Indication of the DIP switch positions for the various values of current thresholds 11

4 DIP switches for setting trip time t1 (type of curve)
5 Indication of the DIP switch positions for the various time settings
6 Alarm indicator LED for protection function S
7 DIP switches for setting current threshold I2
8 Indication of the DIP switch positions for the various current threshold values I 2

9 DIP switches for setting trip time t2 (type of curve)
10 Dip switches for setting inverse time or definite time characteristic

11 Indication of DIP switch positions for the various time settings
12 DIP switches for setting current threshold 13
13 Indication of the DIP switch positions for the various current threshold values 13

14 Rating plate showing the rated current of the neutral CT and the release serial number
15 DIP switches for setting current threshold 14
16 Indication of the DIP switch positions for the various current threshold values 14

17 DIP switches for setting trip time t4 (type of curve)

18 Indication of DIP switch positions for the various time settings

19 Symbol diagram showing operation of function G

20 Connection module with externa units for testing the release and socket for connection to the trip test (SACE T1 unit and SACE PR010/T unit)

Operation and protection functions

Power supply

The unit requires no external power supply. It is self-powered by means of the current transformers installed on the circuit-breaker. For it to operate, it is sufficient for at least one phase to be loaded at 18\% of the rated current of the current transformers (In).

Protection functions

The PR111 release offers the following protection functions:

- overload (L)
- selective short-circuit (S)
- instantaneous short-circuit (I)
- earth fault G).

Overload (L)

The inverse long time-delay trip overload protection L is type $\mathrm{I}^{2} t=\mathrm{k}$; eight current thresholds and 4 curves are available, labeled A, B, C, D. Each curve is identified by the trip time in relation to the current I $=6 \times 11$ ($11=$ set threshold).

Selective short-circuit (S)

The selective short-circuit protection S can be set with two different types of curves with a trip time that is independent of the current ($t=k$) or with a constant specific let-through energy ($\mathrm{t}=\mathrm{k} / \mathrm{l}^{2}$).
Seven current thresholds and 4 curves are available, labeled A, B, C, D. Each curve is identified as follows:

- for curves $(t=k)$ by the trip time for I > I2
- for curves $t=k / \|^{2}$ by the trip time for $\mathrm{I}=8 \mathrm{xIn}$ (In=rated current of the current transformer).
The function can be excluded by setting the DIP switches to the combination labeled "OFF".

Adjustable instantaneous short-circuit (I)

The protection I offers 7 trip thresholds and may be excluded (dip switches in "OFF" position).

Earth fault (G)

The inverse short time-delay trip earth fault protection G (which can be excluded) offers 7 current thresholds and 4 curves labeled A, B, C, D. Each curve is identified by the time t4 in relation to current I4 as shown in the diagram on the front of the release.

Note: the function G is repressed for fault current values I >4x|n (In=rated current of the CT).

Microprocessor-based protection releases and trip curves
PR111/P

User interface

The user communicates with the release in the trip parameter preparation stage by means of the dip switches.
Two LEDs are also available for alarm signalling (timing start) for the L and S functions respectively.

Setting the neutral

Protection of the neutral is available at 50% in the standard version or at 100% (version which can be supplied on request for E1-E2-E3-E4/f and E6/f), of the phase currents.

Test Function

The Test function is carried out by means of the pocket-sized SACE TT1 Trip Test unit, fitted with a two-pole polarized connector housed on the bottom of the box, which allows the device to be connected to the test input sockets on the front of PR111/P releases.
A complete test of the PR111/P microprocessor-based electronic release can be carried out using the special SACE PRO10/T apparatus by applying it to the TEST connector.
All the release functions can be checked by means of this unit.

Versions available

The following versions are available:

PR111/P LI

PR111/P LSI

PR111/P LSIG

Protection functions and setting values - PR111

Function		Trip threshold	Trip time	Can be excluded	Relation $\mathbf{t = f} \mathbf{(l)}$
L	Overload protection Tolerance (1)	$\begin{aligned} \mathrm{II}= & 0,4-0.5-0.6-0.7- \\ & 0.8-0.9-0.95-1 \mathrm{x} \mathrm{In} \end{aligned}$	With current $\mathrm{I}=6 \times \mathrm{I} 1$ t1 = 3 s (curve A), 6 s (curve B), 12 s (curve C), 18 s (curve D)	-	$\mathrm{t}=\mathrm{k} / \mathrm{l}^{2}$
		Release between 1.1 and 1.2×11	$\begin{aligned} & \pm 10 \% \quad \lg \leq 3 \times \ln \\ & \pm 20 \% \quad \lg >3 \times \ln \end{aligned}$		
5	Selective short-circuit protection	$\mathbf{I 2}=1-2-3-4-6-8-10 \times \ln$	With current $\mathrm{I}=8 \times \mathrm{In}$ $\mathrm{t} 2=0.05 \mathrm{~s}$ (curve A), 0.10 s (curve B) 0.25 s (curve C), 0.5 s (curve D)	\square	$t=k / l^{2}$
	Tolerance ${ }^{(1)}$	± 10 \%	$\pm 20 \%$		
		$\mathbf{I 2}=1-2-3-4-6-8-10 \times \ln$	With current $1>12$ $\mathrm{t} 2=0.05 \mathrm{~s}$ (curve A), 0.10 s (curve B) 0.25 s (curve C), 0.5 s (curve D)		$t=k$
	Tolerance ${ }^{(1)}$	$\pm 10 \%$	The better of the two figures: $\pm 20 \%$ o	0 ms	
1	Instantaneous short-circuit protection Tolerance ${ }^{(1)}$	$\mathbf{I} 3=1,5-2-4-6-8-10-12 \times \ln$	Instantaneous	\square	$t=k$
		± 20 \%	$\begin{aligned} & \leq 35 \mathrm{~ms} \quad \lg \leq 3 \times \ln \\ & \leq 30 \mathrm{~ms} \quad \lg >3 x \ln \end{aligned}$		
G	Earth fault protection	$\begin{aligned} 14= & 0.2-0.3-0.4-0.6- \\ & 0.8-0.9-1 x \ln \end{aligned}$	$\begin{aligned} & \text { With current } I=4 \times 14 \\ & t 4=0.1 \mathrm{~s} \text { (curve A), } 0.2 \mathrm{~s} \text { (curve B) } \\ & 0.4 \mathrm{~s} \text { (curve C), } 0.8 \mathrm{~s} \text { (curve D) } \end{aligned}$	\square	$t=k / l^{2}$
	Tolerance ${ }^{(1)}$	$\pm 10 \%$	$\pm 20 \%$		

(1) These tolerances hold in the following conditions:
self-powered relay at full power (without start-up)

- two- or three-phase power supply

The following tolerance values apply in all cases not covered by the above:

	Trip threshold	Trip time
L	Release between 1.1 and 1.25×11	$\pm 20 \%$
S	$\pm 10 \%$	$\pm 20 \%$
1	$\pm 20 \%$	$\leq 60 \mathrm{~ms}$
G	$\pm 15 \%$	$\pm 20 \%$

Functions L-I

Functions L-S-I

Tolerances on thresholds and trip
times page 4/5

Microprocessor-based protection releases and trip curves
PR111/P

Functions L-S-I

Functions G

Tolerances on thresholds and trip
times page 4/5
t [s]

t [s]

Microprocessor-based protection releases and trip curves
PR112/P

Characteristics

The SACE PR112 release is a sophisticated protection system using microprocessor technology. It comprises the PR112/P protection unit and, on request, the PR112/PD protection and dialogue unit. In this case both versions are available: the PR112/PD LON for the LON® communication protocol, and PR112/PD Modbus for the Modbus ${ }^{\circledR}$ protocol.
The wide range of settings makes this protection unit ideal for general use in any type of installation.
Consulting information and programming is extremely easy using a keyboard and alphanumeric liquid crystal display.
An ammeter function and many additional functions are provided over and above the protection functions. These additional functions can be further increased with the addition of the dialogue and signalling unit.

Legend

1 Microprocessor fault indicator LED
2 Auxiliary power supply indicator LED
3 Pre-alarm indicator LED
4 Alarm indicator LED
5 Backlit alphanumeric display
6 Cursor UP button
7 Cursor DOWN button
8 TEST connector to link to SACE PR010/T and SACE PR120/B external accessory units

Operation, protection functions and self-test

The PR112 release does not normally require any external power supplies, being selfpowered from the current transformers (CT): to activate the protection and ammeter functions, it is sufficient for at least one phase to have a current load equivalent to 35% of the rated current of the CTs (20\% in cases where two phases are powered, 15% for three phases). In order for the display to come on, at least one phase must have a current load equivalent to 50% of the rated current of the CTs, 30% if two phases are powered and 20\% for three phases.

The unit ensures fully self-powered operation; when an auxiliary power supply is present, it is also possible to use the unit with the circuit-breaker open or closed.
It is also possible to use an auxiliary power supply provided by the PR120/B portable battery unit (always supplied) which allows the protection functions to be set when the release is not self-powered.
A wide range of setting options is available for the thresholds and trip times of all the functions.
Functions S and G can operate with a time delay that is in-
dependent of the current ($\mathrm{t}=$ k) or with an inverse time delay (constant specific letthrough energy: $1^{2 t} t=k$), as required.
Protection against earth faults can also be obtained by connecting the PR112 release to an external toroid located on the conductor that connects the transformer star center to earth (homopolar toroid).
All the thresholds and trip curve delays of the protection functions are stored in special memories which retain the information even if no power is supplied.

	PR112/P	PR112/PD
Auxiliary power supply (galvanically insulated)	$24 \mathrm{~V} \mathrm{DC} \pm 20 \%$	$24 \mathrm{~V} \mathrm{DC} \pm 20 \%$
Maximum ripple	5%	5%
Inrush current @ 24V	$\sim 3 \mathrm{~A}$ for 30 ms	$\sim 5 \mathrm{~A}$ for 30 ms
Starting current @ 24V	$\sim 1.0 \mathrm{~A}$ for 150 ms	$\sim 1.0 \mathrm{~A}$ for 150 ms
Rated current @ 24V	$\sim 125 \mathrm{~mA}$	$\sim 250 \mathrm{~mA}$
Rated power @ 24V	$\sim 3 \mathrm{~W}$	$\sim 6 \mathrm{~W}$

Microprocessor-based protection releases and trip curves

Protection functions

The PR112 release offers the following protection functions:

- overload (L)
- selective short-circuit (S)
- instantaneous short-circuit (I)
- earth fault (G) (Residual or Source ground return: the latter via a toroid installed on the earth connection of the main power supply)
- self-protection against overtemperature (OT)
- thermal memory for L and S functions
- zone selectivity for functions S or G

Setting the neutral

The neutral protection is 50% of the value set for phase protection in the standard version. The neutral protection may be set to 100% for E1, E2, E3, E4/f, E6/f.

Protection against overtemperature

The range of SACE PR112 releases allows the presence of abnormal temperatures, which could cause temporary or continuous malfunctions of the microprocessor, to be signalled to the user. The user has the following signals or commands available:

- lighting up of the "Warning" LED when the temperature is higher than $70^{\circ} \mathrm{C}$ (temperature at which the microprocessor is still able to operate correctly)
- lighting up of the "Emergency" LED when the temperature is higher than $85^{\circ} \mathrm{C}$ (temperature above which the microprocessor can no longer guarantee correct operation) and, when decided during the unit configuration stage, simultaneous opening of the circuit-breaker with change-over of the corresponding magnetic signal.

Zone selectivity for S or G

The zone selectivity function S or G may be activated or deactivated using the keyboard. Protection is provided by connecting together all of the zone selectivity outputs of the releases belonging to the same zone, and bringing this signal to the zone selectivity input of the release just upstream.

Phase umbalance U

Function U against phase umbalance simply emits a warning signal if an umbalance is detected between two or more phases. This function may be disabled.

Microprocessor self-diagnosis

The PR112 range of releases contains an electronic circuit which checks operation of the microprocessor of the protection unit in real time (an additional electronic circuit is provided for the PR112/PD unit for checking the microprocessor of the dialogue unit).
In case of a temporary or continuous malfunction, the following two signals are activated:

- lighting up of the LED " μ P Fault" (if the 112/PD unit is present, the LED " μ P Communication Fault" also lights)
- when there is auxiliary power supply, closure of the " μ P Fault" contact.

Test Functions

Once enabled from the "control" menu, the "TEST" pushbutton on the front of the release allows correct operation of the chain consisting of the microprocessor, opening solenoid and circuitbreaker to be checked.
The control menu also includes the option of testing correct operation of the display, indicator LEDs, magnetic signals and electrical contacts supplied in all versions of the PR112 release. By means of the front multi-pin connector it is possible to apply a SACE PR010/T Test unit, which allows the functions of the PR111, PR112 and PR113 ranges of releases to be tested and checked.

User interface

The human-machine interface (HMI) of the device is made up of an alphanumeric display, LEDs, pushbuttons and magnetic flags to signal the release trip causes.
A password system has been installed in this new version to manage "Read" or "Edit" modes. The protection parameters (curves and trip thresholds) may be set directly via the device's HMI. The parameters may be changed only when the release is operating in "Edit" mode, but the information available and the parameter settings may be checked at any time in "Read" mode. The language may be selected from among five available options: Italian, English, German, French and Spanish.

Indicator LEDs

LEDs on the front panel of the release are used to indicate pre-alarms ("WARNING") and alarms ("ALARM"). A message on the display always explicitly indicates the type of event concerned. Events indicated by the "WARNING" LED:

- umbalance between phases;
- pre-alarm for overload (L1>90\%);
- first temperature threshold exceeded $\left(70{ }^{\circ} \mathrm{C}\right)$;
- contact wear beyond 80\%.

Events indicated by the "EMERGENCY" LED:

- overload (may begin from $1.05 \times 11<1<1.3 x \mid 1$ in accordance with the standard IEC 60947-2);
- timing of function L ;
- timing of function S;
- timing of function G;
- second temperature threshold exceeded $\left(85^{\circ} \mathrm{C}\right)$;
- contact wear 100%.

Other LEDs indicate, respectively:

- " $\mu \mathrm{P}$ Fault": indicates that the protection unit microprocessor has a temporary (briefly lit) or permanent (steadily lit) fault
- "Vaux": indicates there is an auxiliary power supply

Electrical signalling contacts PR112

Three clean contacts provided on all versions of the PR112 release enable electrical signalling of the following:

- contact K51/p1, which may be set to any of the following based on user preference: timing for

Note:
The overload and microcontroller fault alarm
contacts are avaliable with an external
auxiliary power supply.
protections L, S, G; protections L, S, I, G, OT tripped and other events;

- contact K51/Y01, for when any of the protections L, S, I, G is tripped;
- contact K51/ HP , for microprocessor with temporary or permanent fault.

Microprocessor-based protection releases and trip curves PR112/P

Resetting trip signals

The "RESET" pushbutton allows local resetting of the protection trip signals (relay tripped contact and magnetic flags).
In the case of remote control, the resetting signal for the protection trip signals can be transmitted by means of a dialogue unit (PR112/PD version) only for relay trip caused by excessive temperature and by overload (L). Trip signals for the other functions (S, I and G) may only be reset locally. When the signal is not reset, the dialogue unit is prevented from actuating the circuit-breaker closing command.

Load control

The load control function takes place in combination with the PR020/K accessory unit. The function is active only when auxiliary power supply is present.
Alternatively, using two separate curves (with lower threshold currents and trip times than those available for selection with protection L), the load-control function implements the following logics:

- disconnection of two separate loads,
- connection and disconnection of a load.

These functions make it possible to engage/disengage individual downstream loads before the overload protection L is tripped, thereby tripping the upstream circuit-breaker.

Measuring function

The current measuring function (ammeter) is present on all versions of the SACE PR112 unit. The display shows the currents of the three phases, neutral and earth fault.
The latter current value takes on two different meanings depending on whether the external toroidal transformer for the "Source Ground Return" function or the internal transformer (residual type) is connected.
The ammeter can operate either with self-supply or with auxiliary power supply voltage.
Accuracy of the ammeter measurement chain (current transformer plus ammeter) is no more than 5\% in the current interval 30\%-120\% of In.

Versions available

The following versions are available:

PR112/P LSI

PR112/P LSIG

PR112/PD LSI

PR112/PD LSIG

Protection functions and setting values - PR112

Function		Trip threshold	Threshold steps	Trip Time	Time Step	Can be excluded	Relation $t=f(I)$	Thermal memory	Zone selectivity	
L	Overload	$\begin{aligned} & I 1=0,4 \ldots .1 \times \ln \\ & \text { protection } \end{aligned}$	0,01 \times In	$\mathrm{t} 1=3 \mathrm{~s} \ldots . .144 \mathrm{~s}$	$3 \mathrm{~s}{ }^{(1)}$	-	$t=k / \\|^{2}$	■	-	
	Tolerance (3)	Release between 1,1 and 1,2 x I1		$\begin{aligned} & \pm 10 \% \quad \lg \leq 4 \times \ln \\ & \pm 20 \% \quad \lg >4 \times \ln \end{aligned}$						
S	Selective shortcircuit protection Tolerance (3)	$\begin{aligned} & 12=0,6 \ldots .10 \times \ln \\ & \pm 7 \% \lg \leq 4 \times \ln \\ & \pm 10 \% \lg >4 \times \ln \end{aligned}$	0,1 $\times \mathrm{ln}$	$\mathrm{t} 2=0,05 \mathrm{~s} \ldots .0,75 \mathrm{~s}^{(2)}$ The better of the two figures: $\pm 10 \%$ or $\pm 50 \mathrm{~ms} \lg \leq 4 \times \mathrm{ln}$ $\pm 15 \%$ or $50 \mathrm{~ms} \lg >4 \mathrm{x}$ ln	0,01s	\square	t=k	-	\square	
	Tolerance (3)	$\begin{aligned} & 12=0,6 \ldots .10 \times \ln \\ & \pm 7 \% \lg \leq 4 \times \ln \\ & \pm 10 \% \lg >4 \times \ln \end{aligned}$	$0,1 \times \mathrm{ln}$	$\begin{aligned} & \mathrm{t} 2=0,05 \mathrm{~s} \ldots . .0,75 \mathrm{~s} \\ & \pm 15 \% \lg \leq 4 \times \ln \\ & \pm 20 \% \lg >4 \times \ln \\ & \hline \end{aligned}$	0,01s	■	$t=k / \\|^{2}$	■	-	
1	Instantaneous short-circuit protection Tolerance (3)	$\begin{aligned} & I 3=1,5 \ldots .15 \times \ln \\ & \pm 10 \% \lg \leq 4 \times \ln \\ & \pm 15 \% \lg >4 \times \ln \\ & \hline \end{aligned}$	0,1 x In	Instantaneous $\leq 25 \mathrm{~ms}$	-	\square	t=k	-	-	
G	Earth fault protection Tolerance (3)	$\begin{aligned} & 14=0,2 \ldots .1 \times \ln \\ & \pm 10 \% \end{aligned}$	0,02 x In	$\mathrm{t} 4=0,1 \mathrm{~s} \ldots . .1 \mathrm{~s}$ The better of the two figures: $\pm 10 \%$ or $\pm 50 \mathrm{~ms} \quad \mathrm{~g} \leq 4 \mathrm{x}$ In	0,05 s	\square	$t=k$	-	\square	
	Tolerance (3)	$\begin{aligned} & 14=0,2 \ldots .1 \times \ln \\ & \pm 10 \% \end{aligned}$	0,02 x ln	$\begin{aligned} & t 4=0,1 \mathrm{~s} \ldots . .1 \mathrm{~s} \\ & \pm 20 \% \end{aligned}$	0,05 s	\square	$\mathrm{t}=\mathrm{k} /{ }^{2}$	-	-	
(01)	Protection against overtemperature	may not be set	-	Instantaneous	-	-	temp=k	-	-	

(1) The minimum trip value is 750 ms , regardless of the type of curve set (self-protection)
(2) In addition, if the fixed time trip curve is selected ($\mathrm{t}=\mathrm{k}$), it will also be possible to set the trip time t2=minimum time
(3) These tolerances hold in the following conditions:

- self-powered relay at full power and/or auxiliary power supply (without start-up)
- two- or three-phase power supply

The following tolerance values apply in all cases not covered by the above:

	Trip threshold
L	Release between 1.1 and $1.25 \times \mathrm{II}$
S	$\pm 10 \%$
I	$\pm 20 \%$
G	$\pm 15 \%$

Functions L-S-I

Functions L-S-I

Tolerances on thresholds and trip
times page 4/13

Microprocessor-based protection releases and trip curves
PR112/P

Function G

Tolerances on thresholds and trip
times page 4/13

Microprocessor-based protection releases and trip curves
PR113/P

Characteristics

The PR113 protection release completes the range of available releases for the Emax family of circuit-breakers. It is available in versions PR113/P, for the protection unit, and PR113/PD, fitted with a dialogue unit.
It is a high-performance and extraordinarily versatile release that can offer a complete set of functions for protection, measurement, self-monitoring, signalling, data storage and control of the circuit-breaker.
The front interface of the unit is extremely simple thanks to the aid of the graphical liquid crystal display (LCD), which shows diagrams, bar graphs, measurements and sine curves for the various electrical values.
The PR113 release also offers other functions in addition to standard protections, such as protection against under- and overvoltage, residual voltage protection, phase umbalance protection and protection from directional short-circuit (i.e., those used for ring distribution networks).

Legend

1 TEST connector to apply SACE PR120/B or SACE PR010/T accessories

2 Alarm indicator LED
3 Pre-alarm indicator LED
4 Overtemperature alarm indicator LED
5 Buttons to move the cursor and set parameters: UP, DOWN, LEFT, RIGHT

6 Auxiliary power supply indicator LED
7 Microprocessor fault indicator LED
8 ENTER button to enter or confirm data
9 Test button (TEST) and setting values

10 Pushbutton to reset magnetic and electrical alarm signals (RESET), end the self-Test or return to the currents page from the Trip page

11 Magnetic signal indicating earth fault protection " G " tripped
12 Magnetic signal indicating instantaneous short-circuit protection "I" tripped.
13 Magnetic signal indicating protection functions "S" or "D" tripped
14 Magnetic signal indicating overload protection "L" tripped

5 Magnetic signal indicating that one of the following protections is tripped: undervoltage, overvoltage, residual voltage, reverse power, phase umbalance, overtemperature

16 "TRIP" indicator LED
17 Button to exit submenus or cancel operations (ESC)
18 Serial number of the unit
19 Rating plate indicating the rated current of the CTs and neutral
20 Backlit graphics display

Operation, protection functions and self-test

Power supply

The PR113 release does not require auxiliary power supply for its protection functions: it draws the energy it needs for operation from the current transformers (CT) installed on the circuit-breaker. Indeed, for the protections to operate, it is sufficient for at least one phase to be powered at 35% of the rated current of the CTs (20\% of the current if two phases are powered, and 15\% for three phases). Instead, in order for the display to come on, at least one phase must have a current load equivalent to 50% of the rated current of the CTs (30\% if two phases are powered and 20% for three phases).

Complete operation of the protection unit may be guaranteed by providing an auxiliary power supply capable of monitoring the functions and protections, including: zone selectivity, load control, measuring and calculating harmonics, energy and maintenance.

Auxiliary power is available through the SACE PR120/B accessory, always supplied, which makes it possible to read data and program the releases in the event of:

- circuit-breaker not powered
- circuit-breaker unavailable for power
- withdrawable circuit-breaker in racked-out position.

The earth fault protection may also be obtained by connecting the PR113 release to an external toroid located on the conductor that connects the transformer star center to earth (homopolar toroid).
All the thresholds and trip curve delays of the protection functions are stored in special memories which retain the information even if no power is supplied.

	PR113/P	PR113/PD
Auxiliary power supply (galvanically insulated)	$24 \mathrm{~V} \mathrm{DC} \pm 20 \%$	$24 \mathrm{~V} \mathrm{DC} \pm 20 \%$
Maximum ripple	5%	5%
Inrush current @ 24V	$\sim 3 \mathrm{~A}$ for 30 ms	$\sim 5 \mathrm{~A}$ for 30 ms
Starting current @ 24V	$\sim 1.0 \mathrm{~A}$ for 150 ms	$\sim 1.0 \mathrm{~A}$ for 150 ms
Rated current @ 24V	$\sim 200 \mathrm{~mA}$	$\sim 310 \mathrm{~mA}$
Rated power @ 24V	$\sim 5 \mathrm{~W}$	$\sim 8 \mathrm{~W}$

Note (1): For these protections it is necessary to use a set of three external voltage transformers.

Protection functions

The PR113 release offers the following protection functions:

- overload (L),
- selective short-circuit (S),
- instantaneous short-circuit (I),
- earth fault with adjustable delay (G),
- directional short-circuit with adjustable delay (D) ${ }^{(1)}$,
- phase umbalance (U),
- protection against overtemperature (OT),
- load control (K),
- undervoltage (UV) ${ }^{(1)}$,
- overvoltage (OV) ${ }^{(1)}$,
- residual voltage (RV) $)^{(1)}$,
- reverse power (RP) ${ }^{(1)}$

Shielded Voltage Transformers			
Rated Primary Voltage ANSI/IEC	(Un)	[V]	[100, 115, 120, 190, 208, 220, 230, 240, 277 347, 380, 400, 415, 440, 480, 500, 550, 600, $660,690,910,950,1000] / \sqrt{ } 3$
Rated Secondary Voltage (recommended)	(Us)	[V]	100/ $\sqrt{ } 3$
Precision class			0,5
Primary winding resistance		[Ohm]	> 600
Load resistance		[kOhm]	≥ 10
Overload			20\% permanent
Insulation		[kV]	4 between IN and OUT 4 between shield and IN (the shield must be earthed) 4 between shield and OUT (the shield must be earthed)
Frequency		[Hz]	$45 \leq f \leq 66$

Note: sample choice of the voltage transformer.
For maximum measuring performance in installations with rated phase-phase voltage 690V AC
it is necessary to use a voltage transformer with
Un $=690 / \sqrt{3}$
Class $=0,5$

Notes:

The directional short-circuit protection can be disabled for an adjustable set time ($\mathrm{t}=\mathrm{k}$), and may ether be self-powered or use the auxiliary power supply.
Directional protection is not available on the 250A and 400A CTs

Overload protection L

With the PR113 unit, the overload protection L includes the option to adjust the slope of the protection curve. This adjustment allows perfect coordination with fuses or with medium-voltage protection systems.

Directional short-circuit protection with adjustable delay D

The protection works in a similar way to the fixed-time protection "S", with the added ability to recognize the direction of the phases current during the fault period.
The current direction makes it possible to determine whether the fault is upstream or downstream of the circuit-breaker; particularly in ring distribution systems, this makes it possible to identify and disconnect the distribution segment where the fault has occurred, while keeping the rest of the installation running. If multiple PR112 or PR113 releases are used, this protection may be associated with zone selectivity.

Phase umbalance protection \mathbf{U}

Protection function U, against phase umbalance, is used in those situations requiring especially accurate control over missing and/or umbalanced phase currents. This function can be excluded.

Load control function K

There are two separate curves with threshold currents and trip times lower than those available for selection with the protection L, which may be used for the two applications:

- disconnection of two separate loads;
- connection and disconnection of a load.

These functions make it possible to engage/disengage individual loads before the overload protection L is tripped and definitively opens the circuit-breaker.
The load control may be activated directly through the programmable contacts, or using the load control and signalling device PR020/K.

Voltage protections UV, OV, RV

The PR113 unit offers three types of voltage protection, which may be excluded:

- undervoltage (UV),
- overvoltage (OV),
- residual voltage (RV).

The residual voltage protection RV identifies interruptions of the neutral (or of the earthing conductor in systems with earthed neutral) and faults that shift the star center in systems with insulated neutral (e.g., large earth faults). The star center shift is calculated as a vector sum of the phase voltages.
With the circuit-breaker closed, these protections also operate when the release is self-powered. With the circuit-breaker open they operate only when the auxiliary power supply is present: in this case the release will indicate the "ALARM" status.

Microprocessor-based protection releases and trip curves

PR113/P

Reverse power protection RP

Reverse power protection is especially suited for protecting large machines such as engines and generators. The PR113 unit can analyze the direction of the active power and open the circuit-breaker if the direction is opposite to normal operation. The reverse power threshold and the trip time are adjustable.

Setting the neutral

The neutral protection is normally set to a current value equivalent to 50% of the phase setting. In installations where very high harmonics occur, the resulting current at the neutral may be higher than that of the phases.
This protection may be set for the following values on the PR113 release:
$11 \mathrm{~N}=50 \%-100 \%-150 \%-200 \% \times 11$
The table below lists the neutral settings for the various possible combinations between type of circuit-breaker and the setting of threshold II.

Adjustable neutral protection settings			
Threshold I1 settings (overload protection)			
Circuit-breaker size	$0,4 \leq 11 \leq 0,5$	$0,5<\mathrm{I} 1 \leq 0,66$	$0,66<\mathrm{I}$ [$1^{(*)}$
E1B	50-100-150-200\%	50-100-150\%	50-100\%
E1N	50-100-150-200\%	50-100-150\%	50-100\%
E2B	50-100-150-200\%	50-100-150\%	50-100\%
E2N	50-100-150-200\%	50-100-150\%	50-100\%
E2L	50-100-150-200\%	50-100-150\%	50-100\%
E3N	50-100-150-200\%	50-100-150\%	50-100\%
E3S	50-100-150-200\%	50-100-150\%	50-100\%
E3H	50-100-150-200\%	50-100-150\%	50-100\%
E3L	50-100-150-200\%	50-100-150\%	50-100\%
E4S	50-100\%	50\%	50\%
E4H	50-100\%	50\%	50\%
E4S/f	50-100-150-200\%	50-100-150\%	50-100\%
E6H	50-100\%	50\%	50\%
E6V	50-100\%	50\%	50\%
E6H/f	50-100-150-200\%	50-100-150\%	50-100\%

(*) The setting $^{*} 1=1$ indicates the maximum overload protection setting. The actual maximum allowable setting must take into account any derating based on temperature, the terminals used and the altitude (see chapter "Installations")

Start-up function

The start-up function allows the protections S, D, I and G to operate with higher trip thresholds during the start-up phase. This avoids untimely tripping caused by the high inrush currents of certain loads (motors, transformers, lamps).
The start-up phase lasts from 100 ms to 1.5 s , in steps of 0.05 s . It is automatically recognized by the PR113 release as follows:

- when the circuit-breaker closes with self-powered release;
- when the peak value of the maximum current exceeds $0.1 \times \mathrm{In}$; a new start-up becomes possible after the current has fallen below the threshold of $0.1 \times \mathrm{In}$, if the release is powered by an external source.

Note (1): These measurements require voltage transformers

Zone selectivity function

The zone selectivity function permits the fault area to be insulated by very rapidly segregating the system only at the level closest to the fault, while leaving the rest of the installation running. This is done by connecting the releases: the release nearest the fault is instantly tripped, sending a block signal to the other releases affected by the same fault
The zone selectivity function may be enabled if the fixed-time curve has been selected and the auxiliary power supply is present.
Zone selectivity may be applied with protections S and G or, alternatively, with protection D.

Contact programming functions

The PR113 release is equipped with two relays, with contacts known as K51/p1 and K51/p2 (the latter is not available on PR113/PD).
They may signal a variety of situations selected by the user, including: protection timing, alarms, cause of opening, temperature thresholds exceeded, zone selectivity, load control, disconnected opening solenoid or CT, harmonic distortion, etc.

Measuring functions

The PR113 release provides a complete set of measurements:

- Currents: three phases (L1, L2, L3), neutral (Ne), earth fault
- Voltage: phase-phase, phase-neutral, residual voltage ${ }^{(1)}$
- Power: active, reactive, apparent ${ }^{(1)}$
- Power factor ${ }^{(1)}$
- Frequency and peak factor
- Energy: active, reactive, apparent, counter ${ }^{(1)}$
- Harmonics calculation: up to the twentieth harmonic (waveform and module of the harmonics displayed); up to the nineteenth for frequency $f=60 \mathrm{~Hz}$
- Maintenance: number of operations, percentage of contact wear, opening data storage.

The PR113 unit is able to provide the pattern of measurements for some values over an adjustable period of time P, such as: mean active power, maximum active power, maximum current, maximum voltage and minimum voltage. The last 24 periods P (adjustable from 5 to 120 min.) are stored in non-volatile memory and displayed in a bar graph.

Microprocessor-based protection releases and trip curves

Signalling functions

The PR113 unit provides optic signals (via indicator LEDs, magnetic flags and display messages) and electrical signals.

Optic signals on the front of the release:

- Vaux LED (green): indicates there is an auxiliary power supply
- μ P Fault LED (red): indicates a temporary or permanent fault in the microprocessor
- Temp LED (orange): the signals is flashing for internal relay temperatures $<-20^{\circ} \mathrm{C}$ or $>+70^{\circ} \mathrm{C}$, steadily lit for temperatures $<-25^{\circ} \mathrm{C}$ or $>+85^{\circ} \mathrm{C}$
- Trip LED (red): with auxiliary voltage only, this lights after the circuit-breaker opens due to tripped protections
- Warning LED (yellow): is a generic pre-alarm signal following the occurrence of any of the conditions listed below:
- one or more phases with current values in the range of $0.9 \times 11<1<1.05 \times 11$ (IEC)
- two or three phases with umbalance greater than the programmed level for the protection U (phase umbalance), with protection trip disabled
- distorted waveform with form factor >2.1 (harmonic distortion)
- contact wear beyond 80\%.
- frequency out of range
- Warning Threshold exceeded (current pre-alarm threshold settable via the configuration menu)
- circuit-breaker status error
- Emergency LED (red): it's a generic alarm signal when one of the conditions listed below occurs:
- one or more phases overloaded with current values $\mid>1.3 \times 11$
- timing in progress for protection functions: $\mathrm{S}, \mathrm{I}, \mathrm{G}, \mathrm{D}, \mathrm{UV}, \mathrm{OV}, \mathrm{RV}, \mathrm{RP}$
- timing in the event of a phase umbalance greater than the value set, with protection trip set to on
- contact wear at 100\%
- CTs disconnected
- opening solenoid disconnected
- Yellow magnetic flag $\boldsymbol{*}$ indicates one of the following protections is tripped: undervoltage (UV), overvoltage (OV), residual voltage (RV), reverse power (RP), phase umbalance (U), overtemperature (OT). The release display indicates which protection has been tripped
- Yellow magnetic flag L : indicates protection L tripped
- Yellow magnetic flag S: signals protection S or D tripped
- Yellow magnetic flag I: instantaneous short-circuit protection I is tripped
- Yellow magnetic flag G : earth fault protection G is tripped.

The electrical signals refer instead to the contacts:

- K51/p1 and K51/p2, which may be set by the user (with auxiliary power supply only)
- K51/YO1, which signals that one of the following protections is tripped: $L, S, D, I, G, U, O T, U V$, OV, RV, RP
- K51/ $\mu \mathrm{P}$, to signal temporary or permanent fault of the microprocessor.

In addition to the optic and electrical signals, the PR113 release display also shows messages about incorrect configurations, general alarms, tripped protection functions, load control (with the aid of SACE PRO20/K) and password management.

Versions available
The following versions are available:

PR113/P LSIG

PR113/PD LSIG

Microprocessor-based protection releases and trip curves
PR113/P

Protection functions and setting values - PR113

Functi		Trip threshold	Threshold steps	Trip Time	Time Step	Can be excluded	Relation $t=f(I)$	Thermal memory	Zone selectivity
L	Overload protection Tolerance (3)	I1 = $0.4 \ldots . .1 \times \mathrm{ln}$ Release between 1.1 e 1.2×11	$0.01 \times \mathrm{ln}$	$\begin{aligned} & \mathrm{t} 1=3 \mathrm{~s} . \ldots .144 \mathrm{~s} \\ & \pm 10 \% \quad \lg \leq 4 \times \ln \\ & \pm 20 \% \quad \lg >4 \times \ln \end{aligned}$	$3 \mathrm{~s}^{(1)}$	-	$\mathrm{t}=\mathrm{k} /{ }^{2}$	\square	-
	Tolerance	$\begin{aligned} & 11=0.4 \ldots .1 \times \ln \\ & 1.1 \ldots 1.25 \times 11 \end{aligned}$ (in accordance with IEC 60255-3)	0.01 x ln	$\begin{aligned} & \mathrm{b}=0.2 \ldots .10 \\ & \pm 20 \% \quad \lg >5 \times 11 \\ & \pm 30 \% \quad 2 \times 11<\lg <5 \times 11 \mathrm{ln} \end{aligned}$	0,1s	-			
5	Selective short-circu protection Tolerance (3)	uit $\begin{aligned} & 12=0.6 \ldots .10 \times \ln \\ & \pm 7 \% \lg \leq 4 \times \ln \\ & \pm 10 \% \lg >4 \times \ln \end{aligned}$	$0.1 \times \mathrm{ln}$	$\mathrm{t} 2=0.05 \mathrm{~s} \ldots .0 .75 \mathrm{~s}^{(2)}$ The better of the two figures: $\begin{aligned} & \pm 10 \% \circ \pm 50 \mathrm{~ms} \quad \lg \leq 4 \times \mathrm{ln} \\ & \pm 15 \% \circ \pm 50 \mathrm{~ms} \quad \lg >4 \times \mathrm{ln} \end{aligned}$	0.01s	\square	t=k	-	\square
	Tolerance (3)	$\begin{aligned} & 12=0.6 \ldots .10 \times \ln \\ & \pm 7 \% \lg \leq 4 \times \ln \\ & \pm 10 \% \lg >4 \times \ln \end{aligned}$	$0.1 \times \mathrm{ln}$	$\begin{aligned} & \mathrm{t} 2=0.05 \mathrm{~s} . \ldots .0 .75 \mathrm{~s} \\ & \pm 15 \% \quad \lg \leq 4 \times \ln \\ & \pm 20 \% \quad \lg >4 \times \ln \end{aligned}$	0.01s	■	$t=k /{ }^{2}$	■	-
1	Instantaneous short-circuit protection Tolerance (3)	$\begin{aligned} & \operatorname{l3}=1,5 \ldots .15 \times \ln \\ & \pm 10 \% \lg \leq 4 \times \ln \\ & \pm 15 \% \lg >4 \times \ln \end{aligned}$	0,1 x In	Instantaneous $\leq 25 \mathrm{~ms}$	-	\square	t=k	-	-
G	Earth fault protection Tolerance (3)	$\begin{aligned} & 14=0.2 \ldots .1 \times \ln \\ & \pm 7 \% \lg \leq 4 \times \ln \end{aligned}$	0.02 x In	$\mathrm{t} 4=0.1 \mathrm{~s} . \ldots . .1 \mathrm{~s}$ The better of the two figures: $\pm 10 \%$ o $\leq 50 \mathrm{~ms} \lg \leq 4 \times \mathrm{In}$	0.05 s	\square	t=k	-	\square
	Tolerance (3)	$\begin{aligned} & 14=0.2 \ldots . .1 \times \ln \\ & \pm 7 \% \lg \leq 4 \times \ln \end{aligned}$	0.02 x In	$\begin{aligned} & t 4=0.1 \mathrm{~s} \ldots . .1 \mathrm{~s} \\ & \pm 15 \% \end{aligned}$	0.05 s	\square	$t=k /{ }^{2}$	-	-
D	Directional short-circuit protection Tolerance	$\begin{aligned} & 17=0.6 \ldots .10 \times \ln \\ & \pm 10 \% \end{aligned}$	$0.1 \times \mathrm{ln}$	$\begin{aligned} & \mathrm{t} 7=0.20 \mathrm{~s} \ldots . .0 .75 \mathrm{~s} \\ & \pm 20 \% \end{aligned}$	0.01 s	\square	t=k	-	\square
U	Phase umbalance protection Tolerance	$\begin{aligned} & 16=10 \% \ldots .90 \% \\ & \pm 10 \% \end{aligned}$	10\%	$\begin{aligned} & t 6=0.5 \mathrm{~s} \ldots . . .60 \mathrm{~s} \\ & \pm 20 \% \end{aligned}$	0.5 s	\square	t=k	-	-
(01)	Protection against overtemperature	may not be set	-	Instantaneous	-	-	temp=k	-	-
UV)	Undervoltage protection Tolerance	$\begin{aligned} & \text { I8= 0.6...0.95 x Un } \\ & \pm 5 \% \end{aligned}$	$0.01 \times \mathrm{ln}$	$\begin{aligned} & \mathrm{t} 8=0.1 \mathrm{~s} . \ldots .5 \mathrm{~s} \\ & \pm 20 \% \end{aligned}$	0.1 s	\square	t=k	-	-
OV)	Overvoltage protection Tolerance	$\begin{aligned} & \text { I9 }=1.05 \ldots . \ldots 1.2 \times \text { Un } \\ & \pm 5 \% \end{aligned}$	$0.01 \mathrm{x} \ln$	$\begin{aligned} & \mathrm{t} 9=0.1 \mathrm{~s} \ldots . .5 \mathrm{~s} \\ & \pm 20 \% \end{aligned}$	0.1 s	\square	t=k	-	-
BV)	Residual voltage protection Tolerance	$\begin{aligned} & I 10=0.1 \ldots .0 .4 \times \text { Un } \\ & \pm 5 \% \end{aligned}$	0.05 Un	$\begin{aligned} & \mathrm{t} 10=0.5 \mathrm{~s} \ldots . .30 \mathrm{~s} \\ & \pm 20 \% \end{aligned}$	0.5 s	\square	t=k	-	-
(8P)	Reverse power protection Tolerance	$\begin{aligned} & P 11=-0.3 \ldots-0.1 \times \mathrm{Pn} \\ & \pm 10 \% \end{aligned}$	0.02 Pn	$\begin{aligned} & \mathrm{t} 11=0.5 \mathrm{~s} . \ldots .25 \mathrm{~s} \\ & \pm 20 \% \end{aligned}$	0.1 s	\square	t=k	-	-

(1) The minimum trip value is 750 ms , regardless of the type of curve set (self-protection)
(2) In addition, if the fixed time trip curve is selected $(t=k)$, it will also be possible to set the trip time t2=minimum time
(3) These tolerances hold in the following conditions:
self-powered relay at full power and/or auxiliary power supply (without start-up)
two- or three-phase power supply
The following tolerance values apply in all cases not covered by the above:

	Trip threshold
L	Release between 1.1 and $1.25 \times \mathrm{II}$
	$\pm 20 \%$
S	$\pm 10 \%$
G	$\pm 15 \%$
$\mathrm{G} \pm 10 \%$	$\leq 60 \% \mathrm{~ms}$

Functions L-S-I

Functions L-S-I

Tolerances on thresholds and trip
times page 4/24
$t[s] \quad 10$

Function G

Function L

Tolerances on thresholds and trip
times page 4/24

Microprocessor-based protection releases and trip curves
PR113/P

Function L

t [s]

4

Function L

Tolerances on thresholds and trip
times page 4/24
t [s] 10

Function D

Function U

Tolerances on thresholds and trip

Microprocessor-based protection releases and trip curves
PR113/P
$\mathrm{t}[\mathrm{s}] \quad 10^{4}$

$\mathrm{t}[\mathrm{s}] \quad 10$

Function UV
———n

Functions OV
———

Tolerances on thresholds and trip
times page 4/24

Functions RP
times page 4/24

Protection and dialogue releases for LonWorks ${ }^{\circledR}$ and Modbus ${ }^{\circledR}$ networks PR112/PD and PR113/PD

Functional integration among various kinds of technological installations in industry and services is gradually increasing the need for communication, control and automation in low-voltage electrical installations. Modern microprocessor-based systems that operate using a logic of distributed intelligence (through components able to process data, exchange information, signals and commands) offer the most effective and flexible solution and cover a variety of different applications and specific needs. For a prompt and effective response to the demand for interconnection, intelligence, function, flexibility, interoperability and ease of installation, ABB SACE has developed new communication and control devices for low-voltage circuit-breakers based on the LonTalk ${ }^{\circledR}$ and Modbus ${ }^{\oplus}$ RTU protocols.

The new devices developed for the Emax range of air circuit-breakers, in particular, include:

- PR112/PD LON ${ }^{\circledR}$ releases, based on LonWorks ${ }^{\circledR}$ technology with LonTalk ${ }^{\circledR}$ protocol;
- PR112/PD Modbus ${ }^{\circledR}$ releases, based on the Modbus ${ }^{\circledR}$ RTU protocol;
- PR113/PD Modbus ${ }^{\oplus}$ releases, based on the Modbus ${ }^{\oplus}$ RTU protocol.

LonWorks ${ }^{\circledR}$

LON ${ }^{\circledR}$ (Local Operate Network) is a data transmission technology with applications in a variety of settings, from the service industry to process control. The PR112/PD LON releases (available in LSI and LSIG versions) and the device PR212/D-L (the latter available on the Isomax range of moulded-case circuit-breakers), make it possible to integrate ABB SACE Emax air circuit-breakers and SACE Isomax S moulded-case circuit-breakers in a communication network based on LonWorks ${ }^{\circledR}$ technology, according to the LonTalk ${ }^{\oplus}$ protocol (Ansi/EIA 709.1-A-199). The devices are developed in accordance with LonMArk ${ }^{\circledR}$ directives to ensure HW and SW development in line with the interoperability standard defined by the LonMARK ${ }^{\oplus}$ Association. These devices also make it possible to integrate the circuit-breakers with ABB INSUM, the integrated supervision and measurement control system instrument gauge for motor control centers (MCC). LONWORKS ${ }^{\circledR}$ technology allows high performance while ensuring event-driven peer-to-peer communication. The devices use the TP/XF 78 transceiver (physical data transmission means: braided pair; transmission rate: $78000 \mathrm{bit} / \mathrm{sec}$).

Modbus ${ }^{\circledR}$ RTU

The Modbus ${ }^{\circledR}$ RTU protocol has been well known and used worldwide for several years. It is essentially the market standard thanks to its ease of installation, configuration and integration into different supervision, control and automation systems, in addition to good performance. PR112/PD Modbus (available in LSI and LSIG versions) and PR112/PD Modbus releases and the PR212/D-M device (the latter available on the Isomax range of moulded-case circuit-breakers), allow ABB SACE Emax air circuit-breakers and Isomax S moulded-case circuit-breakers to be integrated into a communication network based on the Modbus ${ }^{\oplus}$ RTU protocol. Modbus ${ }^{\oplus}$ RTU provides a Master-Slave system architecture in which a Master (PLC, PC, etc.) cyclically queries multiple Slaves (field devices). The devices use the standard EIA RS485 as the physical data transmission means, and a maximum transmission rate of 19200 bit/sec.

Note:
LonWorks ${ }^{\oplus}$, LONMARK ${ }^{\circledR}$, LonTalk ${ }^{\oplus}$, LON ${ }^{\circledR}$ are registered trademarks of Echelon ${ }^{\text {® }}$
Corporation.
Modbus ${ }^{\circledR}$ and Modbus ${ }^{\circledR}$ RTU are registered trademarks of Modicon, Inc.

Protection and dialogue releases for LonWorks ${ }^{\circledR}$ and Modbus ${ }^{\circledR}$ networks

 PR112/PD and PR113/PD

 PR112/PD and PR113/PD}

PR112/PD and PR113/PD dialogue units

The human-machine interface (HMI) of the PR112/PD LON, PR112/PD Modbus and PR112/PD Modbus devices is made up of a graphic display (LCD), LEDs, magnetic flags and touchpad pushbuttons.
The user may choose from among five available languages: Italian, English, German, French and Spanish. The HMI is active when the auxiliary power supply is used, if the PR120/B battery unit is connected, or, finally, if the single-phase current is more than 35% of the rated current of the current transformers.
PR112/PD LON, PR112/PD Modbus and PR112/PD Modbus releases are always supplied with the PR120/B battery unit. This accessory is connected to the front connector of the release, and allows the protection parameters to be set regardless of the circuit-breaker status
The dialogue functions and parameter settings are available only when the auxiliary power supply is present.

Sending and receiving data

Releases with built-in dialogue and control functions-PR112/PD LON, PR112/PD Modbus and PR113/PD Modbus-allow the remote acquisition and transmission of a wide range of information; opening and closing, thanks to opening and closing releases installed on the circuit-breaker; storing configuration and programming parameters for the unit; the current thresholds of the protection functions ad protection curves.
All information may be consulted either locally, directly on the front of the circuit-breaker, or remotely via supervision and control systems.

Protection functions

All releases with dialogue functions perform the same protection functions as the corresponding protection releases. See the corresponding sections for the protection releases.

Measuring, signalling, available data functions

The table below provides details of the functions available on each of the releases PR112/PD LON, PR112/PD Modbus and PR113/PD Modbus.

	PR112/PD LON	PR112/PD Modbus	PR113/PD Modbus
Communication functions			
Protocol	LonTalk	Modbus RTU	Modbus RTU standard standard
Physical means	Twisted pair	EIA RS485	EIA RS485
Speed (maximum)	78000bps	19200bps	19200bps
Measuring functions			
Phase currents	\square	\square	\square
Neutral	\square	\square	\square
Earth	\square	\square	\square
Voltage (phase-phase, phase-neutral, residual)			\square
Power (active, reactive, apparent)			■
Power factor			\square
Frequency and peak factor			\square
Energy (active, reactive, apparent)			\square
Harmonics calculation up to the 20th harmonic			\square
Signalling functions			
LED: auxiliary power supply, microprocessor fault, warning, emergency	\square	\square	\square
Temperature			\square
Magnetic flags: indicate trip for L, S, I, G and T	\square	\square	
Magnetic flags: indicate trip for L, S, I, G and other protection			\square
Output contacts: microprocessor fault, trip and one available for configuration	\square	\square	
Output contacts: microprocessor fault, trip and two available for configuration			\square
Data available			
Circuit-breaker status (open, closed)	■	\square	\square
Circuit-breaker position (racked-in, racked-out)	\square	\square	\square
Mode (local, remote)	\square	\square	\square
Protection parameters set	\square	\square	\square
Load control parameters	\square	\square	\square
Alarms			
Protection L	■	■	\square
Protection S	\square	\square	\square
Protection I	\square	\square	\square
Protection G	\square	\square	\square
Protection T	\square	\square	\square
Fault release mechanism failure	■	\square	\square
Undervoltage, overvoltage and residual voltage (timing and trip) protection			\square
Reverse power protection (timing and trip)			\square
Directional protection (timing and trip)			\square
Maintenance			
Total number of operations	\square	\square	\square
Total number of trips	\square	\square	\square
Number of trip tests	\square	\square	\square
Number of manual operations	■	■	■
Number of separate trips for each protection function	\square	\square	\square
Contact wear (\%)	\square	\square	\square
Record data of last trip	\square	\square	\square
Operating mechanisms			
Circuit-breaker opening/closing	\square	\square	\square
Reset alarms	\square	\square	\square
Setting of curves and protection thresholds	\square	\square	\square
Synchronize system time	■		
Safety function			
Automatic opening in case of failure to release for fault (through opening coil)	\square	\square	\square
Events			
Status changes in circuit-breaker, protections and all alarms	\square		

Alarms

Protection L
Protection I
Protection G
Fault release mechanism failure

Operating mechanisms
Circuit-breaker opening/closing
Setting of curves and protection thresholds

Undervoltage, overvoltage and residual voltage (timing and trip) protection
Reverse power protection (timing and trip)

Maintenance

Total number of operations
Total number of trips
Number of manual operations
Number of separate trips for each protection function
Contact wear (\%)
$\begin{array}{lll} & & \\ \square & \square & \square \\ \square & \square & \square \\ \square & & \square \\ \square & & \end{array}$
Safety function
Automatic opening in case of failure to release for fault (through opening coil)

Event time-stamping and saving function (only with LON ${ }^{\circledR}$ protocol)

The PR112/PD LON release keeps its base synchronized with the absolute system time. The availability of absolute time makes it possible to time-stamp the events that occur in the circuitbreaker and in the PR112 release itself.
By gathering these events from the various devices installed, the supervision and control system can compile a list of significant events for managing and analyzing the installation. Such an analysis may be especially useful, for example, in tracing the causes that led to a fault.
Detected and time-stamped events:

- all protection events,
- all "Warning" and "Emergency" signals,
- all "Read/Edit" change-overs
- all opening and closing operations.

The above information is stored locally and made available to the supervision and control system.

SACE PR120/B power supply unit

This accessory, always supplied with the PR112 and PR113 range of releases, makes it possible to read and configure the parameters of the unit whatever the status of the circuit-breaker (openclosed, in test isolated or racked-in position, with/without auxiliary power supply).
An internal electronic circuit powers the unit for approximately 3 consecutive hours for the sole purpose of reading and configuring data.
In relation to the amount of use, battery life decreases if the SACE PR120/B accessory is also used to perform the "COMMAND" menu functions (Trip test, Auto test).

SACE TT1 test unit

The SACE TT1 unit checks the tripping of the PR111/P releases and tests the tripping of the opening solenoid.
The device is powered by a 12 V replaceable battery.

SACE PR010/T configuration test unit

The SACE PRO10/T unit is an instrument capable of performing the functions of testing, programming and reading parameters for the protection units equipping SACE Emax low-voltage air circuit-breakers.
The test function in particular involves the units:

- PR111 (all versions)
- PR112 (all versions)
- PR113 (all versions)
while the parameter programming and reading functions concern the range of PR112 and PR113 releases.
All of the functions mentioned may be carried out "on board" by connecting the SACE PR010/T unit to the front multi-pin connector on the various protection units. Special interface cables supplied with the unit should be used for this connection.
The human-machine interface takes the form of a touchpad and multi-line alphanumeric display. The unit also has two LEDs to indicate, respectively:
- POWER-ON and STAND BY
- battery charge status.

Accessories for protection releases

The unit also has two LEDs to indicate, respectively:

- POWER-ON and STAND BY
- battery charge status.

Two different types of test are available: automatic (for PR111, PR112 and PR113) and manual. By connecting to a PC (using the disc supplied by ABB SACE) it is also possible to upgrade the software of the SACE PRO10/T unit and thus adapt the test unit to the development of new products.
It is also possible to store the most interesting test results in the unit itself, and send a report to the personal computer with the following information:

- type of protection tested
- threshold selected
- curve selected
- phase tested
- test current
- estimated trip time
- measured trip time
- test results.

At least 5 complete tests may be stored in memory. The report downloaded onto PC allow the creation of an archive of tests carried out on the installation.
In automatic mode, the SACE PRO10/T unit is capable of testing the following with the PR112 range:

- protection functions L, S, I,
- G protection function with internal transformer,
- G protection function with toroid on the transformer star center,
- monitoring of smooth microprocessor operation.

The PR113 release also tests:

- overvoltage protection function OV,
- undervoltage protection function UV,
- residual voltage protection function RV,
- phase umbalance protection function U.

The same tests may be repeated manually for PR111 and PR112.
The SACE PRO10/T unit is portable and runs on rechargeable batteries and/or with an external power supply (always supplied) with a rated voltage of $100-240 \mathrm{~V}$ AC/12V DC.

The standard version of the SACE PRO10/T unit includes:

- SACE PRO10/T test unit complete with rechargeable batteries
- SACE TT1 test unit
- 100-240V AC/12V DC external power supply with cord
- cables to connect the unit and the connector
- cable to connect the unit and the computer (RS232 serial)
- user manual and disc containing application software
- plastic suitcase.

SACE PR020/K signalling unit

The SACE PR020/K signalling unit can convert the digital signals supplied by the PR112 and PR113 protection unit (in version P or PD) into electrical signals, via normally open electrical contacts.
The unit is connected to the protection release by means of a dedicated serial line through which flows all of the information about the activation status of the protection functions. The corresponding power contacts are closed based on this information.
The following signals/contacts are available for the PR112 release:

- overload pre-alarm L
- timing and tripping of the protections L, S and G
- protection I tripped
- timing and exceeded overtemperature threshold ($\mathrm{T}>85^{\circ} \mathrm{C}$)
- two load control contacts (connection and disconnection of a load, or disconnection of two loads)
- release tripped
- dialogue fault on a serial line (connecting the protection and signalling units).

With the release PR113 in standard configuration, tripping of the phase umbalance protection is also indicated in addition to the signals listed above.
Setting a dip-switch allows up to seven signal contacts to be freely configured, including: directional protection D tripped, under- and overvoltage UV and OV tripped, reverse power RP tripped, and others.
Two contacts available on the SACE PR020/K unit (load control) can pilot a circuit-breaker opening or closing release. These contacts allow various applications, including load control, alarms, signals, electrical locks.

The alarm signal remains active throughout the overload, until the release is tripped.
The trip signals of the protections remain active during the timing phase, and even after the release is tripped.
Pressing the Reset pushbutton resets the status of all signals.
The unit also contains ten LEDs to visually signal the following information:

- "Power ON": auxiliary power supply present
- "TX (Int Bus)": flashing synchronized with dialogue with the Internal Bus
- eight LEDs associated with the internal contacts
the table below lists the characteristics of the signalling relays available in the SACE PRO20/K unit.

Auxiliary power supply	$24 \mathrm{VDC} \pm 20 \%$
Maximum ripple	5%
Rated power @ 24 V	4.4 W

Specifications of the signalling relays Type	Monostable STDP
Maximum switching power (resistive load)	$100 \mathrm{~W} / 1250 \mathrm{VA}$
Maximum switching voltage	$130 \mathrm{~V} \mathrm{DC/250} \mathrm{~V} \mathrm{AC}$
Maximum switching current	5 A
Breaking capacity (resistive load)	
@ 30V DC @ 250V AC	3.3 A
Contact/coil insulation	$2000 \mathrm{~V} \mathrm{eff} \mathrm{(1} \mathrm{min@} \mathrm{50} \mathrm{Hz)}$

Contents

Functions of the accessories 5/2
Accessories supplied as standard 5/3
Accessories supplied on request 5/4
Shunt opening and closing releases 5/6
Undervoltage release 5/8
Gearmotor for the automatic charging of closing springs 5/10
Signalling of overcurrent releases tripped 5/11
Auxiliary contacts 5/12
Transformers and operation counters 5/15
Mechanical safety locks 5/16
Transparent protective covers 5/18
Interlock between circuit-breakers 5/19
Automatic transfer switch - ATS010 5/22
Spare parts and Retrofitting 5/25

Functions of the accessories

The table that follows lists a few functions that may be obtained by selecting the appropriate accessories from among those provided. Several of the functions listed may be needed at the same time depending on how the circuit-breaker is used. See the related section for a detailed description of the individual accessories.

Function	Components
Remote control	- Opening release - Closing release - Gearmotor for the automatic charging of the closing springs
Remote signalling or actuation of automatic functions depending on the state (open-closed) or position (racked-in, test isolated, racked-out) of the circuit- breaker.	- Auxiliary contacts of open-closed circuit-breaker - Auxiliary contacts of circuit-breaker racked-in, test isolated, racked-out (withdrawable c.-breaker only) - Contact for electrical signalling of overcurrent releases tripped

Accessories supplied as standard

The following standard accessories are supplied depending on the circuit-breaker version:

Fixed circuit-breaker:

- flange for switchboard compartment door (IP30)
- support for service releases
- four auxiliary contacts for electrical signalling of circuit-breaker open/closed (for automatic circuit-breakers only)
- terminal box for connecting outgoing auxiliaries
- horizontal rear terminals
- lifting plate

Withdrawable circuit-breaker:

- flange for switchboard compartment door
- support for service releases
- four auxiliary contacts for electrical signalling of circuit-breaker open/closed (for automatic circuit-breakers only)
- sliding contacts for connecting outgoing auxiliaries
- horizontal rear terminals
- anti-insertion lock for circuit-breakers with different rated currents
- racking-out crank handle
- lifting plate

Accessories supplied on request

The ranges	Automatic circuit-breakers	
	Circuit-breakers forapplications up to 1000 VAC	
Circuit-braearer version	Fixed	Withdrawale
1a) Shunt opening(l) Sosing felease (YOYY)	-	-
16) Sos testup		
10) SoR iest unit	-	-
2a) Underovolage ellase (YU)	-	-
20) Time.delay device for underovolage erease (0)	-	-
Gearmotor for the automaic charging of the closing springs (M)	-	-
4a) Mechanical signalling of overcurent releases stipeed	-	-
4b) Electrical and mechanical signalling of overcurrent releases tripped	-	.
5a) Electrical signaling of ificuitbreaker openclosed (1) (2)	-	-
5b) Electrical sigalling of diruitbreaker rackedintest isolatedracked-out		-
50) Contact signalling closing spings charged	-	-
${ }^{\text {50) }}$ Con Mact signaling undervolage release	-	-
6a) Curent transtorme f for neutral conductoro outside eircititbreaker	-	-
6b) Homopolar toroid for the main power supply earthing conductor (star center of the transformer)	-	-
7) Mechanical operation counter	-	-
8a) Locki o open postiton	-	-
80) Circuitbreaker lock in racked-infacked-outtest sosaled postion		-
8c) Accessories for lock in racked-outtest isolated		-
80) Accessory for shutter paalock device		-
8e) Mechanical lock for compartment door	-	-
9a) Protection for opening and dosing pushututons	-	-
9b) IP54 door protection	-	-
10) Interock between circuitbreakers (3)	-	-
11) Automatic transere swith - ATs010 (4)	-	-

LEGEND

■ Accessory on request on fixed circuit-breaker or moving part

- Accessory on request on fixed part
- Accessory on request on moving part

(1) For automatic circuit-breakers, four auxiliary contacts to electrically signal circuit-breaker open/closed are included in the supply as standard.
(2) The version with 15 auxiliary contacts is incompatible with E4/f and E6/f versions with full-size neutral
(3) Incompatible with the E4/f and E6/f versions with full-size neutral
(4) Incompatible with the range of circuit-breakers for applications up to 1000 V AC

Shunt opening and closing releases

(1) The minimum impulse current duration time in instantaneous service must be 100 ms
(2) If the opening release is permanently connected to the power supply, wait at least 30 ms before sending the command to the closing release.

1a) Shunt opening/closing release (YO/YC) and second opening release (YO2)

Allows remote control opening or closing of the switchgear depending on the installation position and connection of the releases in the support. The release can be used for either of these applications. Given the characteristics of the circuit-breaker operating mechanism, opening (with the circuit-breaker closed) is always possible, while closing is only possible when the closing springs are charged. The release can operate with direct current or alternating current. This release provides instantaneous operation ${ }^{(1)}$, but may be powered permanently ${ }^{(2)}$.
Some installations require very high safety in controlling remote circuit-breaker opening. The control and opening release circuits in particular must be duplicated. To meet these needs, SACE Emax circuit-breakers may be equipped with a second opening release, fitted with a special support to hold it, that can house the standard shunt closing and opening releases.
The housing of the second opening release is that of the undervoltage release, which is therefore incompatible with this type of installation. The special support, including the second opening release, is installed in place of the standard support.
The technical specifications of the second opening release remain identical to those of the standard opening release.
When used as a permanently powered closing release, it is necessary to momentarily de-energize the closing release in order to close the circuit-breaker again after opening (the circuitbreaker operating mechanism has an anti-pumping device).

Reference figure in circuit diagrams: YO (4-5) - YC (2-3) - YO2 (8)

Characteristics		
Power supply (Un):	$\underline{24 V D C}$	120-127 V AC/DC
	$30 \mathrm{~V} \mathrm{AC/DC}$	220-240 V AC/DC
	48 V AC/DC	240-250 V AC/DC
	60 V AC/DC	380-400 V AC
	110-120 V AC/DC	440 AC
Operating limits:	(YO-YO2): 70\% ... 110\% Un	
(IEC Standards EN 60947-2)	(YC): 85%... 110\% Un	
Inrush power (Ps):	DC $=200 \mathrm{~W}$	
Inrush time ~100 ms	$\overline{\mathrm{AC}}=200 \mathrm{VA}$	
Continuous power (Pc):	$D C=5 \mathrm{~W}$	
	AC = 5 VA	
Opening time (YO- YO2):	(max) 60 ms	
Closing time (YC):	$(\max) 80 \mathrm{~ms}$	
Insulation voltage:	2500 V 50 Hz (per 1 min)	

1b) SOR Test Unit

The SOR control and monitoring Test Unit helps ensure that the
 various versions of SACE Emax opening releases are running smoothly, for high reliability in controlling circuit-breaker opening.
Under particularly severe operating conditions or simply for remote control of the circuit-breaker, the opening release is widely used as an accessory for the SACE Emax series of air circuit-breakers.
Maintenance of all functions of this accessory is a necessary condition to guarantee a high level of safety in the installation: this brings about the need to have a device available which cyclically checks correct operation of the release, signalling any malfunctions.
The SOR control and monitoring Test Unit ensures the continuity of opening releases with a rated operating voltage between 24 V and 250 V (AC and DC), as well as the functions of the opening coil electronic circuit.
Continuity is checked cyclically with an interval of 20s between tests.
The unit has optic signals via a LED on the front, which provide the following information:

- POWER ON: power supply present
- YO TESTING: test in progress
- TEST FAILED: signal following a failed test or lack of auxiliary power supply
- ALARM: signal following three failed tests.

Two relays with one change-over are also available on board the unit, which allow remote signalling of the following two events:

- failure of a test - resetting takes place automatically when the alarm stops)
- failure of three tests - resetting occurs only by pressing the manual RESET on the front of the unit)
There is also a manual RESET button on the front of the unit.

Characteristics	
Auxiliary power supply	$24 \mathrm{~V} \ldots 250 \mathrm{~V} \mathrm{AC/DC}$
Maximum interrupted current	6 A
Maximum interrupted voltage	250 V AC

Undervoltage release

2a) Undervoltage release (YU)

The undervoltage release opens the circuit-breaker when there is a significant voltage drop or power failure. It may be used for remote release (using normally-closed pushbuttons), for a lock on closing or for monitoring the voltage in the primary and secondary circuits. The power supply for the release is therefore obtained upstream of the circuit-breaker or from an independent source. The circuit-breaker may be closed only when the release is powered (closing is mechanically locked). The release can operate with direct current or alternating current.
The circuit-breaker is opened with release power supply voltages of $35-70 \%$ Un.
The circuit-breaker can be closed with a release power supply voltage of $85-110 \%$ Un.
It may be fitted with a contact to signal when the undervoltage release is energized (C. aux YU) (see accessory 5d).

Reference figure in circuit diagrams: YU (6)

Characteristics		
Power supply (Un):	24 V DC	120-127 V AC/DC
	$30 \mathrm{~V} \mathrm{AC/DC}$	220-240 V AC/DC
	$48 \mathrm{~V} \mathrm{AC/DC}$	240-250 V AC
	60 V AC/DC	380-400 V AC
	110-120 V AC/DC	440 V AC
Operating limits:	CEI Standards EN 60947-2	
Inrush power (Ps):	DC $=200 \mathrm{~W}$	
	$\overline{\mathrm{AC}}=200 \mathrm{VA}$	
Continuous power (Pc):	DC $=5 \mathrm{~W}$	
	AC = 5 VA	
Opening time (YU):	30 ms	
Insulation voltage:	2500 V 50 Hz (for 1 min)	

2b) Time-delay device for undervoltage release (D)

The undervoltage release may be combined with an electronic time-delay device for installation outside the circuit-breaker, allowing delayed release tripping with adjustable preset times. Use of the delayed undervoltage release is recommended to prevent tripping when the power supply network for the release may be subject to brief voltage drops or power supply failures. Closing of the circuit-breaker is inhibited when it is not powered. The time-delay device must be used with an undervoltage release with the same voltage.

Reference figure in circuit diagrams: $Y U+D(7)$

Characteristics Power supply (D):	$\overline{24-30 ~ V ~ D C ~}$
	$\frac{48 \mathrm{~V} \mathrm{AC/DC}}{\frac{60 \mathrm{~V} \mathrm{AC} / D C}{110-127 ~ V ~ A C / D C}}$
	$\frac{220-250 \mathrm{~V} \mathrm{AC/DC}}{}$
Adjustable opening time (YU+D):	$0.5-1-1.5-2-3 \mathrm{~s}$

Gearmotor for the automatic charging of the closing springs

3) Gearmotor for the automatic charging of the closing springs (M)

Automatically charges the closing springs of the circuit-breaker operating mechanism. The gearmotor immediately recharges the closing springs after closing the circuit-breaker.
The closing springs can, however, be charged manually (using the relative operating mechanism lever) in the event of a power supply failure or during maintenance work.
It is always supplied with a limit contact and microswitch for signalling that the closing springs are charged (see accessory 5d).

Reference figure in circuit diagrams: M (1)

Characteristics Power supply	$24-30 \mathrm{~V} \mathrm{AC/DC}$
	$48-60 \mathrm{~V} \mathrm{AC/DC}$
	$100-130 \mathrm{~V} \mathrm{AC/DC}$
Operating limits:	$220-250 \mathrm{~V} \mathrm{AC/DC}$
Inrush power (Ps):	$85 \% \ldots 110 \%$ Un (CEI Standards EN 60947-2)
Rated power (Pn):	$\mathrm{AC}=500 \mathrm{~W}$
	$\mathrm{DC}=200 \mathrm{VA}$
Inrush time	$0,2 \mathrm{~s}$
Charging time:	$4-5 \mathrm{~s}$
Insulation voltage:	2500 V 50 Hz (for 1 min$)$

Signal for overcurrent releases tripped

4) Mechanical and electrical signalling of undervoltage releases tripped

The following signals are available after the overcurrent release has tripped:

4a) Mechanical signalling of overcurrent releases tripped

Where the circuit-breaker is open following operation of the overcurrent releases, this can be signalled visually on the op-
 erating mechanism, moving the release tripped pushbutton out. The circuit-breaker can only be closed again by resetting the pushbutton to its normal position.

Reference figure in circuit diagrams: S51 (12)

4b) Electrical and mechanical signalling of overcurrent releases tripped

Allows visual signalling on the operating mechanism (mechanical) and remote signalling (electrical using switch) that the cir-cuit-breaker is open following operation of the overcurrent releases. The mechanical signalling pushbutton must be rearmed to reset the circuit-breaker.
SACE PR112 and PR113 releases are already equipped with built-in overcurrent signalling contact.

Reference figure in circuit diagrams: S51 (12)

Auxiliary Contacts

5) Auxiliary contacts

Auxiliary contacts are available installed on the circuit-breaker, which enable signalling of the circuit-breaker status.
The auxiliary contacts are also available in a special version for application with rated voltages Un < 24 V (digital signals).

Characteristics		
Un	In max	T
125 V DC	0.3 A	10 ms
250 V DC	0.15 A	
Un	In max	$\cos \varphi$
250 V AC	5 A	0,3

The versions available are as follows:

5a) Electrical signalling of circuit-breaker open/closed

It is possible to have electrical signalling of the status (open/ closed) of the circuit-breaker using 4,10 or 15 auxiliary contacts.
The auxiliary contacts have the following configurations:

- 4 open/closed contacts (2 normally open +2 normally closed)
- 10 open/closed contacts (5 normally open + 5 normally closed); not available when the SACE PR112 or PR113 overcurrent release is required
- 15 supplementary open/closed contacts for installation outside the circuit-breaker.
The basic configuration described above may be modified by the user for normally open or normally closed indication by repositioning the faston connector on the microswitch.

Reference figures in circuit diagrams: Q/1 $\div 10$ (21-22)

5b) Electrical signalling of circuit-breaker racked-in/test isolated/racked out
In addition to mechanical signalling of the circuit-breaker position, it is also possible to obtain electrical signalling using 5 or 10 auxiliary contacts which are installed on the fixed part.
It is available only for withdrawable circuit-breakers, for installation on the fixed part.
The auxiliary contacts take on the following configurations:

- 5 contacts; set comprising 2 contacts for racked-in signal, 2 contacts for racked-out signal, and 1 contact to signal the test isolated position (main clamps isolated, but sliding contacts inserted).
- 10 contacts; set comprising 4 contacts for racked-in signal, 4 contacts for racked-out signal, and 2 contacts to signal the test isolated position (main clamps isolated, but sliding contacts inserted).

Reference figures in circuit diagrams:
S75I (31-32)
S75T (31-32)
S75E (31-32)

Auxiliary Contacts

5c) Contact for signalling closing springs charged

It is made up of a microswitch that allows remote signalling of the status of the circuit-breaker operating mechanism closing springs (always supplied with the spring charging gearmotor).

Reference figure in circuit diagrams: S33 M/2 (11)

5d) Contact signalling undervoltage release de-energized (C.aux YU)

The undervoltage releases may be fitted with a contact (normally closed or open as preferred) for signalling undervoltage release energized, to remotely signal the status of the undervoltage release.

Reference figure in circuit diagrams: (12)

Transformers and operation counters

6a) Current transformer for neutral conductor outside circuit-breaker

For three-pole circuit-breakers only, allows protection of the neutral by connecting to the overcurrent release. Supplied on request.

Reference figure in circuit diagrams: TI/N-UI/N (51-52)

6b) Homopolar toroid for the main power supply earthing conductor (star center of the transformer)

SACE PR112 and PR113 microprocessor-based electronic releases may be used in combination with an external toroid located on the conductor, which connects the star center of the MV/LV transformer (homopolar transformer) to earth. In this case, the earth protection is defined as Source Ground Return.
The homopolar transformer is available in four different versions in terms of rated current (but keeping the same overall dimensions in any case).

Figura di riferimento negli schemi elettrici: TI/O (51-52)

Characteristics				
Rated current	100 A	250 A	400 A	800 A

7) Mechanical operation counter

This is connected to the operating mechanism by means of a simple lever mechanism, and indicates the number of mechanical operations carried out by the circuit-breaker.
The count is shown on the front of the circuit-breaker.

Mechanical safety locks

8) Mechanical safety locks

8a) Lock in open position

Several different mechanisms are available which allow the cir-cuit-breaker to be locked in the open position.
These devices can be controlled by:

- Key: a special circular lock with different keys (for a single circuit-breaker) or the same keys (for several circuit-breakers). In the latter case, up to four different key numbers are available.
- Padlocks: up to 3 padlocks (not supplied): ø 4 mm.

8b) Circuit-breaker lock in racked-in/test isolated/rackedout position
This device may be controlled by a special circular key lock with different keys (for a single circuit-breaker) or the same keys (for several circuit-breakers - up to four different key numbers available) and padlocks (up to 3 padlocks, not supplied - $\varnothing 4$ mm).
It is available only for withdrawable circuit-breakers, to be installed on the moving part.

8c) Accessories for lock in test isolated/racked-out position
In addition to the circuit-breaker lock in racked-in/test isolated/ racked-out position, allows the circuit-breaker to be locked only in the racked-out or test isolated positions.
It is available only for withdrawable circuit-breakers, to be installed on the moving part.

8d) Accessory for shutter padlock device

Allows the shutters (installed on the fixed part) to be padlocked in their closed position.
It is available only for withdrawable circuit-breakers, to be installed on the fixed part.

8e) Mechanical lock for compartment door

Stops the compartment door from being opened when the cir-cuit-breaker is closed (and circuit-breaker racked in for withdrawable circuit-breakers) and prevents the circuit-breaker from closing when the compartment door is open.

Transparent protective covers

9) Transparent protective covers

9a) Protective cover for opening and closing pushbuttons

These protections are fitted over the opening and closing pushbuttons, preventing the relative circuit-breaker operations unless a special tool is used.

9b) IP54 door protection

This is a transparent plastic protective cover which completely protects the front panel of the circuit-breaker, with a protection rating of IP54. Mounted on hinges, it is fitted with a key lock.

Interlock between circuit-breakers

10) Mechanical interlock

This mechanism creates a mechanical interlock between two or three circuit-breakers (even different models and different versions, fixed/withdrawable) using a flexible cable. The circuit diagram for electrical switching using a relay (for installation by the customer) is supplied with the mechanical interlock. The circuit-breakers can be installed vertically or horizontally.

Four types of mechanical interlocks are available:

Type A: between 2 circuit-breakers (power supply + emergency power supply)
Type B: between 3 circuit-breakers (2 power supplies + emergency power supply)
Type C: between 3 circuit-breakers (2 power supplies + bus-tie)
Type D: between 3 circuit-breakers (3 power supplies / one single closed c.-breaker)

Note:

See the chapters "Overall dimensions" and
"Circuit diagrams" for information about
dimensions (fixed and withdrawable versions) and settings.

Vertical interlock

Horizontal interlock

Interlock between circuit-breakers

The possible mechanical interlocks are shown below, depending on whether 2 or 3 circuit-breakers (any model in any version) are used in the switching system.

Type of interlock	Typical circuit		
Type A			Between two circuit-breakers
:---			
One normal power supply and one emergency			
power supply			

Circuit-breaker 1 can only be closed if 2 is open, and vice-versa.

Type B

Between three circuit-breakers

Two normal power supplies and one emergency power supply.

O = Circuit-breaker open
I = Circuit-breaker closed

Type C

Between three circuit-breakers

The two half-busbars can be powered by a single transformer (bus-tie closed) or by both at the same time (bus-tie open)

O C Circuit-breaker open
| = Circuit-breaker closed

Type D

Between three circuit-breakers
Three power supplies (generators or transformers) on the same busbar, so parallel operation is not allowed

O = Circuilt-breaker open
| = Circuit-breaker closed
Possible interlocks

Circuit-breakers 1 and 3 can only be closed if 2 is open.
Circuit-breaker 2 can only be closed if 1 and 3 are open.

One or two circuitbreakers out of three can be closed at the same time.

1	2	3
0	0	0
1	0	0
0	1	0
0	0	1
0	1	1
1	1	0
1	0	1

Only one of three circuit-breakers can be closed.

The emergency power supply is usually installed to take over from the normal power supply in two instances:

- to power health and safety services (e.g., hospital installations);
- to power parts of installations which are essential for requirements other than safety (e.g., continuous-cycle industrial plants).
The range of accessories for SACE Emax circuit-breakers includes solutions for a wide variety of different plant engineering requirements.
See the specific regulations regarding protections against overcurrents, direct and indirect contacts, and provisions to improve the reiliability and safety of emergency circuits. Switching from the normal to the emergency power supply may be carried out manually (locally or by remote control) or automatically.
To this end, the circuit-breakers used for switching must be fitted with the accessories required to allow electric remote control and provide the electrical and mechanical interlocks required by the switching logic.
These include:
- the opening release
- the closing release
- the motor control
- the auxiliary contacts.

Switching may be automated by means of a special electroni-cally-controlled relay circuit, installed by the customer (diagrams provided by ABB SACE).
Mechanical interlocks between two or three circuit-breakers are achieved using cables that may be applied to horizontally or vertically installed circuit.

Automatic transfer switch - ATS010

11) Automatic transfer switch - ATS010

The switching unit ATS010 (Automatic Transfer Switch) is the new network-group switching device offered by ABB SACE. It is based on microprocessor technology in compliance with the leading electromagnetic compatibility and environmental standards (EN 50178, EN 50081-2, EN 50082-2, IEC 68-2-1, IEC 68-2-2, IEC 68-2-3).
The device is able to manage the entire switching procedure between the normal line and emergency line circuit-breakers automatically, allowing great flexibility of settings.
In case of an error in the normal line voltage, in accordance with the delays set, the normal line circuit-breaker is opened, the generator started and the emergency line circuit-breaker closed. Similarly, when the normal line returns to range, the reverse switching procedure is automatically controlled.
It is especially suited for use in all emergency power supply systems requiring a solution that is ready to install, easy to use and reliable.
Some of the main applications include: power supply for UPS (Uninterrupted Power Supply) units, operating rooms and primary hospital services, emergency power supply for civilian buildings, airports, hotels, data banks and telecommunications systems, power supply of industrial lines for continuous processes.
The switching system consists of the ATS010 unit connected to two motor-driven and mechanically interlocked circuit-breakers. Any of the circuit-breakers in the SACE Emax series may be used.
The built-in mains sensor of the SACE ATS010 device makes it possible to detect errors in the mains voltage. The three inputs may be directly connected to the three phases of the normal power supply line for networks with rated voltage up to 500V AC. Networks with a higher voltage require the insertion of voltage transformers (TV), setting a rated voltage for the device that matches their secondary voltage (typically 100V).
Two change-over contacts for each circuit-breaker connect directly to the shunt opening and closing releases. The circuit-breaker connection is completed by wiring the status contacts: Open/Closed, Relay tripped, Racked-in (for withdrawable/plug-in circuit-breakers).
That is why on every circuit-breaker connected to the ATS010 unit, the following are included in addition to the mechanical interlock accessories:

- spring charging motor,
- opening and closing coil,
- open/closed contact,
- racked-in contact (for withdrawable versions),
- signal and mechanical lock for protection relay tripped.

The ATS010 device is designed to ensure extremely high reliability for the system it controls. It contains various safety systems intrinsically related to software and hardware operation.
For software safety, a special logic prevents unwarranted operations, while a constantly operative watchdog system points out any microprocessor malfunctions via a LED on the front of the device.
Hardware safety allows integration of an electrical interlock via power relay, so that there is no need to use an external electrical interlock system. The manual selector on the front of the device can also control the entire switching procedure, even in the event of a microprocessor fault, by working electromechanically on the control relays.

| General specifications
 Rated supply voltage
 (galvanically insulated from earth) $24 \mathrm{~V} \mathrm{DC} \pm 20 \% 48 \mathrm{~V} \mathrm{DC} \pm 10 \%$
 (maximum ripple $\pm 5 \%$)
 Maximum absorbed power 5 W at 24 V DC 10 W at 48 V DC
 Rated power (mains present
 and circuit-breakers not controlled) 1.8 W a 24 V DC 4.5 W at 48V DC
 Operating temperature $-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
 Maximum humidity 90% without condensation
 Storage temperature $-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
 Protection rating $\mathrm{IP54}$ (front panel)
 Dimensions [mm] $144 \times 144 \times 85$
 Weight [kg] 0.8 |
| :--- | :--- |

Setting range for thresholds and times Minimum voltage \quad Un Min	$-5 \% \ldots-30 \%$ Un
Maximum voltage \quad Un Max	$+5 \% \ldots+30 \%$ Un
Fixed frequency thresholds	$10 \% \ldots+10 \% \mathrm{fn}$
T1: opening delay of the normal line circuit-breaker due to network error (CB-N)	$0 \ldots 32 \mathrm{~s}$
T2: generator start-up delay due to network error	$0 \ldots 32 \mathrm{~s}$
T3: stopping delay of the generator	$0 \ldots 254 \mathrm{~s}$
T4: switching delay due to network stop	$0 \ldots 254 \mathrm{~s}$
T5: closing delay of the emergency line circuit-breaker after detecting the generator voltage (CB-E)	$0 \ldots 32 \mathrm{~s}$

$$
\begin{array}{ll}
\text { Rated voltages settings available } \quad \begin{array}{l}
100,115,120,208,220,230,240,277, \\
347,380,400,415,440,480,500 \mathrm{~V}
\end{array}
\end{array}
$$

Operating sequence

Caption

VN Mains voltage
CB-N Normal line circuit-breaker closed
GE Generator
VE Emergency line voltage
CoCo Enable switching to emergency line
CB-E Emergency line circuit-breaker closed
LOAD Disconnection of lower priority connected loads

Automatic transfer switch - ATS010

Front panel

Caption

1 Status of the ATSO10 unit and logic
2 Operating mode selector
3 Normal line check
4 Normal line circuit-breaker statu
5 Voltage on the emergency line
6 Emergency line circuit-breaker status
7 Generator status

Side panel settings

Caption

1 Selectors to set the under- and overvoltage thresholds
2 Dip-switches to set:

- rated voltage
- normal single-phase or three-phase line
- mains frequency
- switching strategy

3 Switching delay time settings for T1... T5

Spare parts and retrofitting

Spare parts

The following spare parts are available:

- front metal shields and escutcheon plate
- opening solenoid for PR111, PR112 and PR113 overcurrent release
- arcing chamber
- closing springs
- clamp isolation contact for the fixed part of the withdrawable circuit-breaker
- earthing sliding contact (for withdrawable version)
- shutters for fixed part
- complete pole
- operating mechanism
- connection cables for releases and current transformers
- transparent protective cover for releases
- SACE PR120/B power supply unit
- toolbox
- battery for SACE PR120/B power supply unit
- front escutcheon plate for Ronis key lock

For more details, request a copy of the ABB SACE spare parts catalogue.

Retrofitting Kits

Special kits have been prepared to replace old SACE Otomax and SACE Novomax G30 circuitbreakers. The kits include SACE Emax circuit-breakers that take advantage of all components of the existing switchboard. Installing a new circuit-breaker in the old switchboard, offers uncontested technical and economic benefits, and is extremely rapid as there is no need to redo the main switchboard connections.

Contents
Primary and secondary distribution
Selective protection 6/2
Back-up protection 6/7
Directional protection 6/8
Earth fault protection 6/12
Switching and protection of transformers 6/16
Line protection 6/20
Switching and protection of generators 6/22
Switching and protection of asynchronous motors 6/25
Switching and protection of capacitors 6/30

Primary and secondary distribution

Selective protection

Discrimination is normally used for tripping overcurrent protection devices in civil and industrial installations to isolate the part affected by a fault from the system, causing only the circuitbreaker immediately on the supply side of the fault to trip. The example in the figure below highlights the need to coordinate tripping between the two circuit-breakers A and B so that only circuit-breaker B is tripped in the event of a fault in C, ensuring continuity of service for the rest of the system powered by cir-cuit-breaker A.
Whereas natural discrimination within the overload current range is normally found due to the difference between the rated currents of the user protection circuit-breaker and the main circuitbreaker on the supply side, discrimination can be obtained in the short-circuit current range by differentiating the current values and, if necessary, the trip times.

Circuit diagram with selective coordination of protections

Discrimination may be total or partial:

- total discrimination: only cir-cuit-breaker B opens for all current values lesser than or equal to the maximum shortcircuit current in C;
- partial discrimination: only circuit-breaker B opens for fault currents below a certain value; A and B are both tripped for greater or equal values.
In principle, the following types of discrimination are possible:
Current discrimination, obtained by setting the instantaneous trip currents of the cir-cuit-breaker chain to different values (higher settings for the circuit-breakers on the supply side). This often results in partial discrimination.
Time-current discrimination, obtained by intentionally incorporating increasing time-delays in the trip times of the cir-cuit-breakers furthest on the supply side in the chain. The ratio between the trip thresholds on the supply side and load side must be greater than 1.5 , as for current discrimination.

In this case it is necessary to make sure that the circuit-breakers with delayed trip have an Icw current value that is suitable for the most severe situation that can be envisaged in the point of installation (maximum prospective current - time-delay set). Time-current discrimination requires a delay to be set to at least 100 ms in relation to the trip time of the circuit-breaker on the load side.
All versions of the microprocessor-based releases PR111, PR112 and PR113 are fitted with the S protection function, and are therefore suitable for time-current discrimination (see chap. on overcurrent releases).
In the following example, circuit-breakers A, B and C have the following characteristics:

	Icu $[\mathrm{kA}]$ $(\leq 400 \mathrm{~V})$	Icw $[\mathrm{kA}]$
A	E3S 32	75
B	E3S 25	75
C	T2H 160	70

Primary and secondary distribution

Selective protection

The table below shows the discrimination values (in kA) for the circuit-breakers in the example:

Load-side circuit-breaker	Supply-side circuit-breaker A- E3S 32
B - E3S 25	75
C - T2H 160	70

As can be seen in the following figure, there are no intersections in the overload and delayed short-circuit zone of the protection release trip curves.

Time-Current Curve

Zone discrimination, applicable to protection functions S, G and D. This type of discrimination allows shorter trip times for the circuit-breaker closest to the fault than in the case of time discrimination.
The word zone is used to refer to the part of an installation between two circuit-breakers in series. Each circuit-breaker that detects a fault communicates this to the circuit-breaker on the supply side using a simple connection wire. The fault zone is the zone immediately on the load side of the circuit-breaker that detects the fault, but does not receive any communication from those on the load side. This circuit-breaker opens without waiting for the set time-delay.
All Emax circuit-breakers in versions B-N-S-H-V fitted with PR112 and PR113 release allow zone discrimination.
ABB SACE provides important calculation tools to facilitate the work of designers in coordinating protection devices, including the Slide rule kits, DOCWin and CAT software packages and updated coordination charts.

Note

For discrimination in the event of earth faults with circuit-breakers in series, see page 6/14.

Primary and secondary distribution

Selective protection

Discrimination tables

Emax air circuit-breakers with Isomax moulded-case circuit-breakers

Emax air circuit-breakers with Tmax moulded-case circuit-breakers

	Supply-side circuit-breaker		E1		=2			=				E4		E6	
		VersionRelay	B	N	B	N	L	N	S	H	L	S	H	H	V
			EL		EL			EL				EL		EL	
Load-side Version circuit-breaker	Relay	lu [A]	$\begin{gathered} 800 \\ 1250 \end{gathered}$	$\begin{gathered} 800 \\ 1250 \end{gathered}$	$\begin{aligned} & 1600 \\ & 2000 \end{aligned}$	1250	1250	2500	1250	1250	2000	4000	$\begin{aligned} & 3200 \\ & 4000 \end{aligned}$	50003200	
						1600	1600	3200	1600	1600	2500			6300	4000
						2000			2000	2000					5000
									2500	2500					6300
									3200	3200					

T1	B	TM	160	T	T	T	T	T	T	T	T	T	T	T	T	T
	C			T	T	T	T	T	T	T	T	T	T	T	T	T
	N			T	T	T	T	T	T	T	T	T	T	T	T	T
T2	N	TM, EL	160	T	T	T	T	T	T	T	T	T	T	T	T	T
	S			36	T	T	T	T	T	T	T	T	T	T	T	T
	H			36	T	T	55	T	T	T	T	T	T	T	T	T
	L			36	T	T	55	T	T	T	75	T	T	T	T	T
T3	N	TM	250	T	T	T	T	T	T	T	T	T	T	T	T	T
	S			36	T	T	T	T	T	T	T	T	T	T	T	T

The table below takes the following settings into consideration:

Releases				
TM	$\mathrm{I}=1 \mathrm{x}$ th	$13=10 \times \mathrm{ln}$		
PR211	$11=1 \times \mathrm{lth}$	$13=12 \times \mathrm{ln}$		
PR212	$\mathrm{I}=1 \times \mathrm{lth}$	I2 = OFF	$13=12 \times \mathrm{ln}$	t1 = curva D
PR221 DS	$11=1 \times \mathrm{lth}$	$12=10 \times \mathrm{ln}$	$13=10 \times \mathrm{ln}$	t1 = curva B
PR112	$11=1 \times \mathrm{lth}$	$12=10 \times \mathrm{ln}$	$13=12 \times \mathrm{ln}$	$\mathrm{t} 1=72 \mathrm{~s}$
PR113	$11=1 \times \mathrm{lth}$	$12=10 \times \ln$	$13=12 \times \ln$	$\mathrm{t} 1=72 \mathrm{~s}$

Notes:
$\mathrm{T}=$ total discrimination.
Discrimination is expressed in KA at the supply voltage of $380-415 \mathrm{~V} \mathrm{AC}$ in accordance with the CEI Standards EN 60947-2.
The values shown in the table refer to either the maximum short-circuit current or which discrimination is ensured, or the maximum breaking capacity of the circuit-breaker on the load side. Releases PR112-PR113 for Emax circuitbreakers, PR211-PR21a2 for Isomax and PR221/DS for Tmax allow numerous possible time-current settings of the functions L, S and I.

Primary and secondary distribution
Back-up protection

Back-up protection is required by CEI Standards 64-8, IEC standard 60364-4-43 and annex A of the standard IEC 60947-2, which permit the use of a protective device with breaking capacity below the prospective short-circuit current in the points where it is installed, on condition that there is another protective device on the supply side with the necessary breaking capacity. In this case the characteristics of the two devices must be coordinated in such a way that the specific energy let through by the combination is not higher than that which can be withstood without damage by the device on the load side, and by the protected conductors.
In the diagram in the figure, circuit-breaker B, located on the load side of circuit-breaker A, can have a lower breaking capacity than the prospective short-circuit current in the event of a fault in " C ", if circuit-breaker A is able to satisfy both of the following conditions:

- it has a suitable breaking capacity (greater than or equal to the prospective short-circuit current in its point of installation and obviously greater than the short-circuit current in "C")
- in the event of a fault in "C" with short-circuit values higher than the breaking capacity of circuit-breaker B, circuit-breaker A must provide a specific let-through energy limiting function, limiting it to a value that can be withstood by circuitbreaker B and the protected conductors.
A fault in "C" can therefore cause a double interruption, however the back-up protection must ensure that B always trips within the limits of its breaking capacity.
It is necessary to choose switchgear combinations that have been verified in laboratory tests for this type of protection. The combinations possible are specified in ABB SACE documents (Slide rule kits, DOCWin) and shown here for SACE Emax cir-cuit-breakers.
Back-up protection is used in electrical installations in which there is no essential need for continuous operation: when the supply-side circuit-breaker opens, it also excludes users that are not affected by the fault. However, the adoption of this type of coordination limits the size of the installation and therefore reduces costs.

Note

Back-up protection may also be
implemented on more than two levels: the figure above shows an example of
coordination on three levels. In this case the choices are correct if at least one of the two situations below occurs:

- the circuit-breaker furthest on the supply side A is coordinated with both circuitbreakers B and C (coordination between circuit-breakers B and C is not necessary);
- each circuit-breaker is coordinated with the circuit-breaker immediately on the load side of it, which is to say the circuitbreaker furthest on the supply side A is coordinated with the next one B , which is in turn coordinated with circuit-breaker C.

Table showing coordination for back-up protection	
Supply-side circuit-breaker	Breaking capacity
E2L - E3L	$130[\mathrm{kA}]$ (at 380/415 V)
Load-side circuit-breaker Breaking capacity on the outgoing lines with back-up	
S5N	$65[\mathrm{kA}$
S5H - S6N - E1B - E2B	$85[\mathrm{kA}]$
S6S - S6H - S7S - S7H - E1N - E2N	$100[\mathrm{kA}]$

Directional protection

Directional protection is based on the ability to correlate the circuit-breaker's behavior with the direction of the fault current.
Two different trip times may be set on the relay PR113 depending on the current direction:

- a direction time in agreement (Fw) with the reference direction set;
- a direction time discordant (Bw) to the reference direction set.

With reference to the figure below, for the circuit breaker QF1 if a fault occurs at point B the current will flow in direction $A-B$, discordant to the reference direction: the trip time will be Bw. Similarly, for a fault in A, the current direction will be B-A in agreement with the reference direction: the trip time will be Fw.

In the following example, the combinations shown in the table occur:

This installation aims for discrimination between QF1, QF2, QF3 and QF4.
Upon examining the table we see that the only instance in which the fault current direction is in agreement with that set for the circuit-breaker QF1 is for a fault in point A. The cir-cuit-breaker QF1 must trip more quickly than the other cir-cuit-breakers, since it is the
one nearest the fault. To achieve this, the trip time Fw must be set to a value below that of circuit-breakers QF2 and QF4.
For the other possible faults, the circuit-breaker QF1 will have to be the slowest. Since the fault current always flows in a direction discordant to the setting, the trip time Bw must be set to a value greater than
that of circuit-breakers QF2 and QF4.
Similarly to the process described for the circuit-breaker QF1, the QF2 circuit-breaker must trip first in the case of a fault in B, and delay tripping in the case of faults elsewhere in the installation to ensure discrimination.

Directional zone discrimination

Adopting zone discrimination with the function D allows the behavior of the various releases PR113 to be coordinated, if the relay buses are appropriately wired. Each relay has 4 signals available, two input signals (one in the same direction and one discordant), through which the relay receives the block signal from other relays, and two output signals (one in the same direction and one discordant), through which the relay sends the block signal to other relays. Thanks to these connections, the tripped-circuit breaker will be always the one nearest the fault, thereby ensuring maximum discrimination of the installation. For example, the diagram below shows the connections that must be made to enable the transmission of the interlock signals between the various relays. Note in particular that:

1) for a fault in A, the circuit-breaker QF1 is traversed by current from the busbar B1. This current flows in the same direction as the setting. The OUT bus Fw of QF1 locks the IN Bus Bw of the circuit-breaker QF2, and the IN Bus Fw of the circuit-breaker QF3. QF2 is traversed by an uninterrupted current discordant to the setting, while QF3 is traversed by a current in the same direction as the setting.
The figure below shows all of the connections between the relays; the thicker arrows indicate the active lock signal in addition to the connection.

Direction set

Directional protection

2) for a fault in B, the circuit-breaker QF2 is traversed by a current from the busbar B1. This current flows in the same direction as the setting. The OUT bus Fw of QF2 locks the IN Bus Bw of the circuit-breaker QF1, and the IN Bus Fw of the circuit-breaker QF3. QF1 is traversed by an uninterrupted current discordant to the setting, while QF3 is traversed by a current in the same direction as the setting.
The figure below shows all connections between the relays, the thicker arrows indicate the active lock signal in addition to the connection.

Direction set
3) for a fault in C, the circuit-breakers QF1 and QF2 are traversed by a current with direction discordant to the setting, while QF3 is traversed by a current in the same direction as the setting. No circuit-breaker, however, is locked and thus all will trip according to the selected times.
The figure below shows only the connections, as no lock signal is active.

4) for a fault in D, the circuit-breaker QF3 is traversed by a current from the busbar B1; this current flows in a direction discordant to the setting. The OUT bus Bw of QF3 locks the IN Bus Bw of the circuit-breakers QF1 and QF2: both are traversed by fault currents discordant to the direction set. The figure below shows the connections between the relays, and the thicker arrows indicate the active lock signals in addition to the connections.

Earth fault protection

Circuit-breakers with protection G

Circuit-breakers fitted with releases offering earth fault protection function G are usually used in MV/LV distribution substations to protect both the transformers and distribution lines.
The protection function G detects the residual current of the

sum of the currents detected by the current transformers on the phases and neutral. It is effectively used in TT, IT, and TN-S electrical installations and, limited to the section of the installation with a neutral conductor (N) branched and separated from the conductor PE, also in TN-CS systems (for the TN-S area only).
Protection function G is not used in TN-C systems, since they provide the neutral and protection functions using a single conductor.
The protection device thresholds and trip times can be selected from a wide range, also making it easy to achieve discrimination for this type of fault with regard to the protection devices installed on the load side. Discrimination is therefore ensured regarding the re-sidual-current releases located on the load side.
Function G of the PR111 release has constant specific letthrough energy curves ($1^{2} \mathrm{t}=\mathrm{k}$);

In the PR112 and PR 113 releases, curves with trip times independent of the current (t = k) can also be selected.
The figure below shows an example of one possible choice of earth fault protection devices and their possible settings.
The protection functions G of the circuit-breakers on the main switchboard A has the task of guaranteeing discrimination, with respect to each other and the residual-current protection devices located on the users of the distribution switchboards B.

Example of choice of earth fault protection devices and their corresponding settings.

Earth fault protection

Use of the toroid on the star center of the transformer

In the case of circuit-breakers to protect MV/LV transformers, it is possible to install a toroid on the conductor connecting the star center of the transformer to earth (application allowed with the SACE Emax series fitted with the PR112 and PR113 range of electronic releases). This determines the earth fault current. The figure below shows the operating principle of the toroid installed on the star center of the transformer.
The use of this accessory allows the protection threshold against earth fault (function G) to be independent of the size of the primary current transformers installed on the circuitbreaker phases.

The table shows the main characteristics of the range of toroids (available only in the closed version).

Characteristics of toroid ranges

Rated current Outer dimensions of the toroid	$\mathbf{1 0 0 ~ A , 2 5 0 ~ A , ~ 4 0 0 ~ A , ~ 8 0 0 ~ A ~}$
	$\mathrm{L}=165 \mathrm{~mm}$
Internal diameter of the toroid	$\varnothing=160 \mathrm{~mm}$

Using the SACE RCQ switchboard electronic residual current relays

The family of SACE Emax circuit-breakers with a rated current up to 2000A can be combined, if fitted with a shunt opening release, to the residual current relay for SACE RCQ switchboards with a separate toroid transformer (for outside installation on the line conductors) thus enabling earth leakage currents to be determined for values between 0.03 and 30A.
Thanks to the wide range of settings, the SACE RCQ switchboard relay is suitable for applications where a residual current protection system coordinated with the various distribution levels is to be constructed from the main switchboard to the final user. It is particularly suitable where low-sensitivity residual current protection is required, for example in both partial (current-type) or total (time-current) discrimination chains, and for highsensitivity applications to protect people against direct contact. When the auxiliary power supply voltage drops, the opening command intervenes after a minimum time of 100 ms and after the time set above 100 ms .
The SACE RCQ relay is suitable for use in the presence of alternating only earth current (Type AC), for alternating and/or pulsating current with continuous components (Type A), and is suitable for achieving residual current discrimination.
The SACE RCQ relay is indirectly acting, and works on the release mechanism of the circuit-breaker by means of the circuitbreaker shunt opening release (to be ordered by the customer) to be housed in the circuit-breaker itself.
The table below shows the main characteristics of the SACE $R C Q$ relay.

SACE RCQ residual current switchboard relay		
Power supply voltage AC	[V]	80 ... 500
DC	[V]	48 ... 125
Tripping threshold setting $\quad 1 \Delta n$		
- 1a setting range	[A]	0,03-0,05-0,1-0,3-0,5
- 2a setting range	[A]	1-3-5-10-30
Trip time settings 1a range	[s]	$0-0,05-0,1-0,25$
Trip time settings 2a range	[s]	0,5-1-2,5-5
Range of use of closed transformers		
- Toroidal transformer $\varnothing 60 \mathrm{~mm}$	[A]	0,03 ... 30
- Toroidal transformer $\varnothing 110 \mathrm{~mm}$	[A]	0,03 ... 30
Range of use of transformers that may be opened		
- Toroidal transformer $\varnothing 110 \mathrm{~mm}$	[A]	0,3 ... 30
- Toroidal transformer $\varnothing 180 \mathrm{~mm}$	[A]	0,1 ... 30
- Toroidal transformer $\varnothing 230 \mathrm{~mm}$	[A]	0,1 ... 30
Dimensions L x $\mathrm{H} \times \mathrm{P}$	[mm]	$96 \times 96 \times 131,5$
Drilling for assembly on door	[mm]	92×92

Dimensions of the external toroid for SACE RCQ					
Outer dimensions of the toroid	Closed		Openable		
$\square \mathrm{L}$ [mm]	94	165	166	241	297
H ${ }^{\prime}$, \quad P [mm]	118	160	200	236	292
-P- ${ }^{\text {c }}$ [mm]	81	40	81	81	81
Internal diameter \varnothing [mm]	60	110	110	180	230

Switching and protection of transformers

General information

When choosing circuit-breakers to protect the LV side of MV/LV transformers, one basically needs to take the following into account:

- the rated current of the protected transformer on the LV side, on which the circuit-breaker capacity and protection settings both depend
- the maximum short-circuit current at the point of installation, which determines the minimum breaking capacity that must be offered by the protection device.

MV-LV substation with a single transformer

The rated current of the transformer, LV side, is determined by the following equation

$$
\operatorname{In}=\frac{\mathrm{Sn} \times 10^{3}}{\sqrt{3 \times \mathrm{U}_{20}}}
$$

where
Sn = rated power of the transformer, in kVA
$\mathrm{U}_{20}=$ rated secondary voltage (no load) of the transformer, in V
In = rated current of the transformer, LV side, in A (rms value)

The three-phase short-circuit current at full voltage, right at the LV terminals of the transformer, may be expressed by the following equation (assuming infinite short-circuit power at the primary):

$$
\mathrm{Icc}=\frac{\ln \times 100}{\mathrm{Ucc} \%}
$$

where:
Ucc \% = short-circuit voltage of the transformer, in \%
In $\quad=$ rated current, LV side, in A (rms value)
Icc = rated three-phase short-circuit current, LV side, in A (rms value)
The short-circuit current is lower than the values obtained using the equation above if the circuit-breaker is installed some distance away from the transformer using a cable or busbar connection, determined by the impedance of the connection. In practice, contrary to the above, the short-circuit value provided by the transformer is also affected by the short-circuit power of the Pcc network to which the transformer is connected.

Choosing the circuit-breaker

The table below shows a number of possible choices of SACE Emax circuit-breakers in relation to the characteristics of the transformers to be protected.

Warning

The information provided is valid for the conditions indicated in the table. The calculations will need to be adjusted for different conditions, and choices altered as needed.

Note: infinite short-circuit power of the supply side network

		E1B 800	E1B 1250	E1B 1250	E2B 1600	E2B 2000	E3N 2500	E3N 3200	E4S 4000	E6H 5000
Sn	[kVA]	500	630	800	1000	1250	1600	2000	2500	3150
Ucc	[\%]	4	4	5	5	5	6,25	6,25	6,25	6,25
U_{20}	[V]	400	400	400	400	400	400	400	400	400
In ${ }^{(1)}$	[A]	722	909	1155	1443	1804	2309	2887	3608	4547
Icc ${ }^{(1)}$	[kA]	18,1	22,7	23,1	28,9	36,1	36,9	46,2	57,7	72,7

(1) For voltages $\mathrm{U}^{\prime} 20$ other than 400 V , multiply In and Icc for the following factors K :

U^{\prime}	$[\mathrm{V}]$	220	380	400	415	440	480	500	660	690
K		1.82	1.05	1	0.96	0.91	0.83	0.8	0.606	0.580

Switching and protection of transformers

MV-LV substation with multiple transformers in parallel

The rated current of the transformer is calculated following the same procedure outlined in the previous section.
The minimum breaking capacity of each protection circuitbreaker on the LV side must be higher than whichever of the following values is greatest (the example is for machine 1 in the figure and applies to three machines in parallel):

- Icc1 (short-circuit current of transformer 1) in the event of a fault immediately on the load side of circuit-breaker I1;
- Icc2 + Icc3 (Icc2 and Icc3 = short-circuit currents of transformers 2 and 3) in the event of a short-circuit on the supply side of circuit-breaker 11 .
Circuit-breakers 14 and 15 on the outgoing lines must have a breaking capacity greater than Icc1 + Icc2 + Icc3; the contribution to the short-circuit current by each transformer obviously depends on the short-circuit power of the network to which it is connected (the table below assumes Pcc=750 MVA), and on the line connecting the transformer and circuit-breaker (to be determined in each instance).

Switching and protection of Pcc transformers 750MVA Vn= 400V

Transformer power (s		Circuit-breaker A ry circuit of the transformer)				Circuit-breaker B (outgoing user line)								
		Icc	Type	Relay	lb	Icc	Rated	current an	model	circuit-b	ker (relay	PR111-PR	12-PR11	
$[\mathrm{kVA}]$	[A]	[kA]		TA [A]	[A]	[kA]	800 A	1000 A	1250 A	1600 A	2000 A	2500 A	3200 A	4000 A
1×500	722	17,7	E1B 800	$\mathrm{ln}=800$	722	17,7	E1B 800*	-	-	-	-	-	-	-
2×500	722	17,5	E1B 800	$\mathrm{ln}=800$	1444	34,9	E1B 800*	E1B 1250*	E1B 1250*	-	-	-	-	-
1×630	909	22,3	E1B 1250	$\mathrm{ln}=1000$	909	22,3	E1B 800*	-	-	-	-	-	-	-
2×630	909	21,8	E1B 1250	$\mathrm{ln}=1000$	1818	43,6	E1N 800*	E1N 1250*	E1N 1250*	E2N 1600*	-	-	-	-
3×630	909	42,8	E1N 1250	$\mathrm{ln}=1000$	2727	64,2	E2N 1250*	E2N 1250*	E3S 1250*	E2N 1600*	E2N 2000*	E3N 2500*	-	-
1×800	1155	22,6	E1B 1250	$\mathrm{ln}=1250$	1155	22,6	E1B 800*	-	-	-	-	-	-	-
2×800	1155	22,1	E1B 1250	In=1250	2310	44,3	E1N 800*	E1N 1250*	E1N 1250*	E2N 1600*	E2N 2000*	-	-	-
3×800	1155	43,4	E1N 1250	ln=1250	3465	65,0	E2N 1250*	E2N 1250*	E3S 1250*	E2N 1600*	E2N 2000*	E3N 2500*	E3N 3200*	-
1×1000	1443	28,1	E2B 1600	$\mathrm{ln}=1600$	1443	28,1	E1B 800*	E1B 1250*	E1B 1250*	-	-	-	-	-
2×1000	1443	27,4	E2B 1600	$\mathrm{ln}=1600$	2886	54,8	E2N 1250*	E2N 1250*	E2N 1250*	E2N 1600*	E2N 2000*	E3N 2500*	-	-
3×1000	1443	53,5	E2N 1600	In=1600	4329	80,2	E3H 1250*	E3H 1250*	E3H 1250*	E3H 1600*	E3H 2000*	E3H 2500*	E3H 3200*	E4H 4000
1×1250	1804	34,9	E2B 2000	ln=2000	1804	34,9	E1B 800*	E1B 1250*	E1B 1250*	E2B 1600*	-	-	-	-
2×1250	1804	33,8	E2B 2000	ln=2000	3608	67,7	E3S 1250*	E3S 1250*	E3S 1250*	E3S 1600*	E3S 2000*	E3S 2500*	E3S 3200*	-
3×1250	1804	65,6	E3S 2000	ln=2000	5412	98,4	E3H 1250*	E3H 1250*	E3H 1250*	E3H 1600*	E3H 2000*	E3H 2500*	E3H 3200*	E4H 4000
1×1600	2309	35,7	E3N 2500	In=2500	2309	35,7	E1B 800*	E1B 1250*	E1B 1250*	E2B 1600*	E2B 2000*	-	-	-
2×1600	2309	34,6	E3N 2500	ln=2500	4618	69,2	E3S 1250*	E3S 1250*	E3S 1250*	E3S 1600*	E3S 2000*	E3S 2500*	E3S 3200*	E4S 4000
3×1600	2309	67,0	E3S 2500	In=2500	6927	100,6	E2L 1250*	E2L 1250*	E2L 1250*	E2L 1600*	E3L 2000*	E3L 2500*	E6V 3200*	E6V 4000
1×2000	2887	44,3	E3N 3200	In=3200	2887	44,3	E1N 800*	E1N 1250*	E1N 1250*	E2N 1600*	E2N 2000*	E3N 2500*	-	-
2×2000	2887	42,6	E3N 3200	In=3200	5774	85,1	E3H 1250*	E3H 1250*	E3H 1250*	E3H 1600*	E3H 2000*	E3H 2500*	E3H 3200*	E4H 4000
1×2500	3608	54,8	E4S 4000	$\mathrm{ln}=4000$	3608	54,8	E2N 1250*	E2N 1250*	E2N 1250*	E2N 1600*	E2N 2000*	E3N 2500*	E3N 3200*	-
1×3125	4547	68,2	E6H 5000	In=5000	4547	68,2	E3S 1250*	E3S 1250*	E3S 1250*	E3S 1600*	E3S 2000*	E3S 2500*	E3S 3200*	E4S 4000

WARNING!

The table refers to the conditions specified on the previous page. The information for choosing the circuit-breakers is provided only in relation to the operating current and prospective short-circuit current. To make the correct choice other factors such as discrimination, back-up protection, the decision to use current-limiting circuit-breakers, etc, must be considered. It is therefore essential for designers to carry out precise verification.
The types of circuit-breakers proposed are all from the SACE Emax series. Positions marked by an asterisk (*) are suitable for other possible choices from the SACE Isomax series of moulded-case circuit-breakers. It is also needed to bear in mind that the short-circuit currents shown in the table have been calculated on the assumption of 750MVA power on the supply side of the transformers, and without taking the impedances of the busbars and connections to the circuit-breakers into account.

Note

Concerning the verification required by the CEI 64-8 Standards, which stipulate that th overload protection must have a trip curren If that ensures operation for a value less than 1.45 lz (If $<1.45 \mathrm{Iz}$), this condition is always satisfied since SACE Emax circuitbreakers conform to CEI EN 60947-2 Standards and this value is 1.3 In .

Line protection

The following main parameters must be known in order to make the correct choice of circuitbreakers for line operation and protection:

- operating current of the line IB
- permanent current carrying capacity of the conductor IZ
- section S and cable insulation material, with relative constant K
- short-circuit current Icc in the point of installation of the circuit-breaker.

The protective device chosen must offer a breaking capacity (Icu or Ics at the system voltage) greater than or equal to the short-circuit value at the application point. The operating characteristics of the chosen device must also meet the following conditions:

Overload protection

$\mathrm{I}_{\mathrm{B}} \leq \mathrm{I}_{\mathrm{N}} \leq \mathrm{I}_{\mathrm{Z}}$
$\mathrm{I}_{\mathrm{f}} \leq 1,45 \mathrm{I}_{\mathrm{Z}}$

where

I_{B} is the operating current of the circuit;
I_{z} is the permanent current carrying capacity of the conductor;
I_{n} is the permanent current carrying capacity of the conductor;
I_{f} is the current that ensures operation of the protective device.
The above inequalities are easily achieved thanks to the broad setting ranges offered by the PR111-PR112-PR113 releases.

Short-circuit protection

Assuming that conductor overheats adiabatically during the passage of the short-circuit current, the following formula must be observed:
$\left(1^{2} t\right)_{\text {circuit-breaker }} \leq\left(\mathrm{K}^{2} \mathrm{~S}^{2}\right)_{\text {cable }}$
thus the specific let-through energy $\left(I^{2} t\right)$ of the circuit-breaker must be lesser than or equal to the specific let-through energy $\left(K^{2} S^{2}\right)$ withstood by the cable.

Also make sure that the circuit-breaker trips within the limits prescribed by international standards for the minimum value of the baseline short-circuit current.
The minimum short-circuit current is the current corresponding to a short-circuit produced between phase and neutral (or between phase and phase if the neutral conductor is not distributed) at the farthest point of the conductor.

Protection against indirect contacts

In the event of a fault involving a phase and a part of the installation that is not normally live, it is best to make sure that the circuit-breaker trip within the times prescribed by international standards for current values lesser than or equal to the fault current.
Based on the value of this current, it may be possible to intervene using the function I of the relay, function G or, for extremely low values, the RCQ device.

The figure shows which function of the electronic release or device to use based on the fault current.

Example:
In an installation with V n $=400 \mathrm{~V}$ and $\mathrm{ICC}=45 \mathrm{kA}$, a load with $\mathrm{lb}=1102 \mathrm{~A}$ is powered with 4 cables in parallel, insulated in EPR by 300 mm 2 and $\mathrm{Iz}=1193 \mathrm{~A}$
With appropriate settings, the E2N2000 In=2000A circuit-breaker equipped with the electronic protection relay PR112, protects the cable in accordance with the above conditions, as illustrated in the following graphs.

Time-Current Curve LLL

Specific let-through energy curve LLL

Switching and protection of generators

Emax circuit-breakers are suitable for use with low-voltage generators employed in the following applications:
A - back-up generators for essential users
B - generators in insulated operation
C - generators for small power stations connected in parallel with other generators and, possibly, with the power supply network.

In cases A and B, the generator does not operate in parallel with the power supply network: the short-circuit current therefore depends on the generator itself and, possibly, the users connected.
In case C, the breaking capacity must be determined by assessing the short-circuit current imposed by the network at the point of circuit-breaker installation.
The main points to check for generator protection are:

- the short-circuit current delivered by the generator; this may be assessed only if one is familiar with the machine's typical reactance and time constants. Here one can simply note that low short-circuit protection device settings are normally required (2-4 times In);
- the thermal overload limit of the machine. According to the standard IEC 60034-1, this value is set at 1.5 xIn for a period of 30 seconds.
For a detailed assessment, see the DOCWin software or specialized books on the topic.
The wide range of settings offered by microprocessor-based releases:
PR111 Threshold I (1.5 to 12) x In Threshold $S(1$ to 10) x In
PR112 Threshold I (1.5 to 15) x In Threshold $S(0.6$ to 10) x In
PR113 Threshold I (1.5 to 15) \times In Threshold $S(0.6$ to 10) $\times \operatorname{In}$
makes SACE Emax circuit-breakers perfectly suitable for protecting large generators for the short-circuit current and for the thermal overload limit.

Choiche of the circuit-breakers to protect generators

The table shows the rated currents of the circuit-breakers, based on the electrical specifications of the generators. The breaking capacity required by the application must be defined in order to choose the appropriate circuit-breaker.
The microprocessor-based protection releases available are suitable for every need.

Frequency 50 Hz - Voltage 400 V			Frequency 60 Hz - Voltage 450 V		
Rated power of the alternator $[\mathrm{kVA}]$	Rated power of the alternator [A]	Rated current of the circuit-breaker [A]	Rated power of the alternator [kVA]	Rated power of the alternator [A]	Rated current of the circuit-breaker [A]
630	909	1000	760	975	1000
710	1025	1250	850	1091	1250
800	1155	1250	960	1232	1250
900	1299	1600	1080	1386	1600
1000	1443	1600	1200	1540	1600
1120	1617	2000	1344-1350	1724-1732	2000
1250	1804	2000	1500	1925	2000
1400	2021	2500	1650-1680-1700	2117-2155-2181	2500
1600	2309	2500	1920-1900	2463-2438	2500
1800	2598	3200	2160-2150	2771-2758	3200
2000	2887	3200	2400	3079	3200
2250	3248	4000	2700	3464	4000
2500	3608	4000	3000	3849	4000
2800	4041	5000	3360	4311	5000
3150	4547	5000	3780	4850	5000
3500	5052	6300	4200	5389	6300

Switching and protection of generators

Reverse power protection RP

The reverse power protection gets tripped when active power is incoming to the generator rather than outgoing as in normal conditions. Power reversal takes place if the mechanical power supplied by the prime mover driving the generator drops sharply. In this condition the generator acts as a motor, and may cause serious damage to the prime movers such as overheating for steam turbines, cavitation for hydraulic turbines, or explosions of uncombusted diesel fuel in diesel engines.

When the power measured by the relay falls below zero, the PR113 release trips, opening the circuit-breaker and thus preventing damage.

Switching and protection of asynchronous motors

The low-voltage automatic circuit-breaker alone can guarantee the following functions in circuits for powering three-phase asynchronous motors:

- switching
- overload protection
- short-circuit protection.

Pattern of peak current values in the starting phase of a threephase asynchronous motor.

This solution is particularly suitable if the switching frequency is not high, as is normally the case for large motors. In this case, using only the circuit-breaker for the switching and protection of the motor represents a highly advantageous solution due to its competitive cost-efficiency, reliability, ease of installation and maintenance and compact dimensions.
The automatic circuit-breakers in the SACE Emax selective (not current-limiting) series are able to provide the motor switching and protection function by virtue of their high breaking capacities and the wide range of possible settings offered by the microprocessor-based releases.
SACE Emax circuit-breakers are suitable for use with motors with rated powers within the range 355 kW to 630 kW . For power ratings up to 355 kW the insulated moulded-case circuitbreakers in the SACE Isomax range are also available. Medium voltage power supplies are normally used for powers above 630 kW.

A = Circuit-breaker
$\mathbf{B}=$ Overload protection (inverse long time-delay trip)
$\mathbf{C}=$ Short-circuit protection (instantaneous)
$\mathbf{M}=$ Asynchronous motor

Diagram showing direct starting of asynchronous motor using only the circuit-breaker fitted with a microprocessor-based overcurrent release.

Switching and protection of asynchronous motors

The switching of three-phase asynchronous motors demands considerable attention to the starting operation, since the current during this phase follows the typical behaviour shown in the figure, which must be taken into account when choosing the protection devices.
It is essential to calculate the typical values of the times and currents indicated in the figure in order to choose the correct switching and protection devices for the motor. These data are normally provided by the motor manufacturer.

The following ratios generally apply:

- la $=6$-10 le (la and le: rms values)
- lp = 8-15 la (lp and la: rms values).

The rated current of the circuit-breaker must be at least 20\% higher than that of the motor.
The protection releases must be adjusted so as to:

- prevent slow operation in the motor starting phase
- ensure the installation is protected against the overcurrents which might occur at any point on the load side of the circuitbreaker (including internal motor faults).
The inverse long time-delay trip protection and instantaneous short-circuit protection must be set as close as possible to the motor starting curve without, however, interfering with it.

Note
The IEC 947-4-1 standard covers motor starters. The following classes are considered for overload protection:

Operating class	Trip time $\mathbf{t}(\mathbf{s})$ for $\mathbf{I}=\mathbf{7 , 2} \times \mathbf{I 1}$ $(\mathbf{I}=$ release setting current)
10 A	$2<\mathrm{t} \leq 10$
10	$4<\mathrm{t} \leq 10$
20	$6<\mathrm{t} \leq 20$
30	$9<\mathrm{t} \leq 30$

The table specifies that the protection device must trip in a time t within the limits for the class when the current flowing through the device to be protected is 7.2 times the release setting current (assumed to be equal to the rated current of the motor).
The overload devices are divided into classes in a manner closely linked to the motor starting time: for example, a motor with a starting time of 5 seconds requires a protection device in class 20
The same standards provide specific prescriptions for the protection device in cases of three-phase operation or with the loss of a phase.

Note

The current Ip is commonly calculated from its peak value ($\mathrm{Ip}=1.4-2.5 \mathrm{la}$): the corresponding rms value is obtained by dividing the result by 1.41.

Warning

The curves of the motor and releases are not directly comparable, in that they both express time-current links, but have conceptually different meanings:

- the motor starting curve represents the values assumed by the starting current moment by moment;
- the release curve represents the currents and corresponding trip times for the protection device.
The overload trip curve is set correctly when it is immediately above point A (figure alongside), which identifies the top of the rectangle with sides formed by the starting time "ta" and the current "la," respectively, thermally equivalent to the variable starting current.

Three-phase operation

The overload protection device must ensure tripping in more than two hours with currents equal to 1.05 times the rated current of the motor and in less than two hours with currents equal to 1.2 times the same rated current, as indicated in the table which follows (page 6/29).

Switching and protection of asynchronous motors

Operation with the loss of a phase

Tripping must occur in less than two hours at $20^{\circ} \mathrm{C}$ in the event of the loss of a phase when the current in the energized poles reaches 1.2 times the rated current. It is possible to trip the circuit-breaker using the PR113 release.

Choosing the circuit-breakers to be used for motor protection

The table below shows the starting characteristics for large motors, from 355 to 630 kW , with circuit-breakers in the SACE Emax series for switching and protecting motors in category AC-3-440V-50 Hz.
The table shows the choice of current transformers able to ensure a sufficiently high value for the instantaneous trip threshold setting (I): in the absence of experimental data it is advisable to verify that the ratio between the threshold of protection device I (I3) and the threshold of protection device L (I1) is:
$\mid 3 / I 1=12 \ldots 15$.
The PR112 and PR113 microprocessor-based releases are in compliance with international standard IEC 947-4-1. In particular the devices ensure the protection of class 10A, 10, 20 and 30 motors setting the function L trip time at $I=7.211$ between 0.52 s and 25 s , where I 1 is the L threshold setting current. PR112 and PR113 protection releases are compensated in temperature, and their operation is not negatively affected by the loss of a phase.

Benefits of earth fault protection \mathbf{G}

The earth fault protection (G) is advisable in order to:

- improve safety against fire hazards
- improve protection of the motor and personnel in the event of machine faults.

Benefits of thermal memory

The suitability of enabling the thermal memory (option offered by PR112 and PR113 releases) must be evaluated in relation to the type of user. Enabling the thermal memory (which makes the microprocessor-based protection similar to that provided by a thermomagnetic device) increases the protection level of the motor when restarting after tripping due to an overload.

Undervoltage protection

The undervoltage protection device in control systems for asynchronous motors demands particular attention, performing, amongst other things, two important functions:

- it prevents simultaneous restarting of all the motors upon return of the power supply, with the risk of causing the entire installation to go out of service by tripping the main circuitbreaker overcurrent protection devices
- it prevents the motor from restarting without a control signal, which could cause a hazard for maintenance personnel or damage the processing cycle.

This protection is available by means of:

- undervoltage release,
- protection function UV (undervoltage) on the PR113 release.

I / ln	$\mathbf{1 . 0 5}$	$\mathbf{1 . 2}$	$\mathbf{1 . 5}$	$\mathbf{7 . 2}$	Operating class
Tp	$>2 \mathrm{~h}$	$<2 \mathrm{~h}$	$<120 \mathrm{~s}$	$2<\mathrm{t} \leq 10 \mathrm{~s}$	10 A
		$<240 \mathrm{~s}$	$4<\mathrm{t} \leq 10 \mathrm{~s}$	10	
		$<480 \mathrm{~s}$	$6<\mathrm{t} \leq 20 \mathrm{~s}$	20	
	$<720 \mathrm{~s}$	$9<\mathrm{t} \leq 30 \mathrm{~s}$	30		

Motor		SACE Emax circuit-breaker			Microprocessor-based release		
$\begin{gathered} \mathrm{Pe} \\ {[\mathrm{~kW}]} \end{gathered}$	le [A]	Operations (AC-3) [No.]	Type	$\begin{aligned} & \text { Icu } \\ & {[\mathrm{kA}]} \end{aligned}$	$\begin{gathered} \text { In } \\ {[\mathrm{A}]} \end{gathered}$	Type	$\begin{aligned} & \mathrm{TA} \\ & {[\mathrm{~A}]} \end{aligned}$
220	408	10000	E1B	42	800	PR112/PR113	800
250	418	10000	E1B	42	800	PR112/PR113	800
315	580	10000	E1B	42	1250	PR112/PR113	1250
355	636	10000	E1B	42	1250	PR112/PR113	1250
400	710	10000	E1B	42	1250	PR112/PR113	1250
450	800	10000	E1B	42	1250	PR112/PR113	1250
220	408	10000	E1N	50	800	PR112/PR113	800
250	418	10000	E1N	50	800	PR112/PR113	800
315	580	10000	E1N	50	1250	PR112/PR113	1250
355	636	10000	E1N	50	1250	PR112/PR113	1250
400	710	10000	E1N	50	1250	PR112/PR113	1250
450	800	10000	E1N	50	1250	PR112/PR113	1250
500	910	12000	E2B	42	1600	PR112/PR113	1600
560	1020	12000	E2B	42	1600	PR112/PR113	1600
630	1140	12000	E2B	42	1600	PR112/PR113	1600
220	408	15000	E2N	65	1250	PR112/PR113	800
250	418	15000	E2N	65	1250	PR112/PR113	800
315	580	15000	E2N	65	1250	PR112/PR113	1250
355	636	15000	E2N	65	1250	PR112/PR113	1250
400	710	15000	E2N	65	1250	PR112/PR113	1250
450	800	15000	E2N	65	1250	PR112/PR113	1250
500	910	12000	E2N	65	1600	PR112/PR113	1600
560	1020	12000	E2N	65	1600	PR112/PR113	1600
630	1140	12000	E2N	65	1600	PR112/PR113	1600
220	408	12000	E3S	75	1250	PR112/PR113	800
250	418	12000	E3S	75	1250	PR112/PR113	800
315	580	12000	E3S	75	1250	PR112/PR113	1250
355	636	12000	E3S	75	1250	PR112/PR113	1250
400	710	12000	E3S	75	1250	PR112/PR113	1250
450	800	12000	E3S	75	1250	PR112/PR113	1250
500	910	10000	E3S	75	1600	PR112/PR113	1600
560	1020	10000	E3S	75	1600	PR112/PR113	1600
630	1140	10000	E3S	75	1600	PR112/PR113	1600
220	408	12000	E3H	100	1250	PR112/PR113	800
250	418	12000	E3H	100	1250	PR112/PR113	800
315	580	12000	E3H	100	1250	PR112/PR113	1250
355	636	12000	E3H	100	1250	PR112/PR113	1250
400	710	12000	E3H	100	1250	PR112/PR113	1250
450	800	12000	E3H	100	1250	PR112/PR113	1250
500	910	10000	E3H	100	1600	PR112/PR113	1600
560	1020	10000	E3H	100	1600	PR112/PR113	1600
630	1140	10000	E3H	100	1600	PR112/PR113	1600

Switching and protection of capacitors

Operating conditions of circuit-breakers during continuous service for capacitor banks

According to IEC Standards 60831-1 and 60931-1, capacitors must be able to operate in service conditions with a rated rms current of up to 1.3 times the rated current Icn of the capacitor. This prescription is due to the possible presence of harmonics in the power supply voltage.
It should also be kept in mind that a tolerance of $+15 \%$ is admissible for the capacitance value corresponding to its rated power, so that the circuit-breakers for switching capacitor banks must be chosen to permanently carry a maximum current equal to:
$\operatorname{In}=1.3 \times 1.15 \times \operatorname{Inc}=1.5 \times \operatorname{Inc}$.

Current for connecting capacitor banks

Connection of a capacitor bank can be compared to closing in short-circuit conditions, where the transient making capacity Ip has high peak values, above all when capacitor banks are connected in parallel with others that are already powered. The value of Ip needs to be calculated for each individual situation because it depends on the individual circuit conditions and may in certain cases even have a peak value equal to $100-200 \times$ Icn for a duration of 1-2 ms.
This fact must be taken into consideration when choosing the circuit-breaker, which must have a suitable making capacity, and when setting the overcurrent release, which must not cause unwarranted trips when the bank is connected.

Choosing the circuit-breaker

Using the information on the rating plate of the three-phase capacitor bank
Qn = rated power in kVar
Un = rated voltage in V
the rated current of the capacitor bank is determined as follows:

$$
\operatorname{lnc}=\frac{\mathrm{Qn} \times 10^{3}}{\sqrt{3} \times \mathrm{Un}}, \text { in } \mathrm{A} .
$$

The following conditions must be verified for the circuit-breaker: Rated current lu > 1.5 Inc
Overload protection setting $\mathrm{I}=1.5 \times \mathrm{Inc}$
Short-circuit protection setting $13=$ OFF
Breaking capacity Icu $>=I c c$, at the point of installation.

Choosing the protection and switching circuit-breakers for capacitors

The breaking capacity of the circuit-breaker must take the prospective short-circuit current in the point of installation into account. The possible models are shown in the table.

Maximum power of the capacitor bank at $\mathbf{5 0 H z}$ [kvar]				Circuit-breaker Type	Rated current of the current transformer In [A]	Rated current of the capacitor bank Inc [A]	Overload protection setting I1 [A]	Short-circuit protection setting I3 [A]
400 V	440 V	500 V	690 V					
578	636	722	997	E1-E2-E3	1250	834	1 x In	OFF
739	813	924	1275	E2-E3	1600	1067	1 x In	OFF
924	1017	1155	1594	E2-E3	2000	1334	$1 \times \mathrm{ln}$	OFF
1155	1270	1444	1992	E3	2500	1667	$1 \times \mathrm{ln}$	OFF
1478	1626	1848	2550	E3-E4-E6	3200	2134	1 x In	OFF

Note
The circuit-breakers E2L and E2L are not suitable for switching capacitor banks.

AB Overall dimensions

Contents

Fixed circuit-breaker 7/2
Withdrawable circuit-breaker 7/8
Mechanical interlock 7/15
Circuit-breaker accessories 7/16

Overall dimensions

Fixed circuit-breaker

Basic version

with horizontal rear terminals

Caption
(1) Inside edge of compartment door
(2) Segregation (when provided)
(3) M10 mounting holes for circuit-breaker (use M10 screws)
(4) $1 x M 12$ screw (E1, E2, E3) or $2 \times$ M12 screws (E4, E6) for earthing (included in the supply)
(5) Insulating wall or insulated metal wall

E1/E2

View A

E3
View A

	A	B	C	D	E	F	G
E1	386	296	148	148	10	130	117.5
E2	386	296	148	148	26	114	117.5
E3	530	404	202	202	26	114	117.5
E4	656	566	238	328	26	166	91.5
E4/f	746	-	-	328	26	166	91.5
E6	908	782	328	454	26	166	91.5
E6/f	1034	-	-	454	26	166	91.5

E4
View A

E6

Overall dimensions

Fixed circuit-breaker

Basic version
with vertical
rear terminals

E2/E4

E1

E1
View A

E3/E6

E3
View A

E2

View A

1SDC200216F000 1

Version with
 front terminals

E1

E2

E3

Overall dimensions

Fixed circuit-breaker

Version with
 front terminals

E4

E4

E4/f

E6

E6

E6/f

Compartment dimensions

Through-holes for flexible cables for mechanical interlocks

Drilling of compartment door

Tightening torque for main terminals Nm 70 Tightening torque for earthing screw Nm 70

	A	B
E1	400	490
E2	400	490
E3	500	630
E4	700	790
E4/f	-	880
E6	1000	1130
E6/f	-	1260

Overall dimensions

Withdrawable circuit-breaker

Basic version
with horizontal rear terminals

E1/E2

E3

	A	B	C	D	E	\mathbf{F}	
	3 poles 4 poles						

Overall dimensions

Withdrawable circuit-breaker

Basic version

 with vertical rear terminalsE1

E1
View A

E4
View A

E2/E4

E2
View A

E4/f
View A

E6

View A

E6/f
View A

Version with
 front terminals

Overall dimensions

Withdrawable circuit-breaker

Version with

front terminals

E4

E4

E4/f

E6

E6

E6/f

Version with

front terminals

E1
View A

View A

$$
\mathrm{E} 4 / \mathrm{f}
$$

View A

E2
-

E3
View A

E6/f
View A

Overall dimensions

Withdrawable circuit-breaker

Compartment dimensions

Through-holes for flexible cables for mechanical interlocks

Drilling of compartment door

Tightening torque for fastening screws Nm 20 Tightening torque for main terminals Nm 70 Tightening torque for earthing screw Nm 70

| | | A |
| :--- | :---: | :---: | B (

Overall dimensions

Mechanical interlock

Type A
Horizontal Vertical

Notes

When fitting interlocks between two circuitbreakers, it is necessary to make suitable holes (through the switchboard) in the mounting surface for fixed circuit-breakers or for the fixed part of withdrawable circuit breakers in order to pass through the flexible cables, observing the measurements shown in the figures on pages $7 / 7$ and $7 / 14$. For vertical interlocks, align the right-hand sides vertically and reduce the bends in the flexible cables to a minimum (radius R. 70 $\mathrm{mm})$. All the angle values of the bends which the cable passes through added together must not exceed 720°

Type B
(emergency interlock below) Horizontal Vertical

Type B
(emergency interlock in the middle) Horizontal Vertical

Type B
(emergency interlock above)
Horizontal Vertical

Type C
Horizontal Vertical

Type D
Horizontal Vertical

Horizontal interlocks

Maximum distance between two interlocks 1200 mm from one interlock to the other. The cables pass under the fixed parts, following the same connection layout shown for vertical circuit-breakers.

Take up the excess cable by making it go through one complete turn only or an omega as shown in the figure.

Overall dimensions

Circuit-breaker accessories

Mechanical

compartment door lock

Holes in compartment door

Minimum distance between circuit-breaker and switchboard wall

Fixed version Withdrawable version

	A	
	3 Poles	4 POLES
E1	180	180
E2	180	180
E3	234	234
E4	270	360
E4/f		360
E6	360	486
E6/f		486

Current transformer

 for the external neutral

E1-E2-E4

E3-E6

E4/f

E6/f

Overall dimensions

Circuit-breaker accessories

Electrical signalling of circuit-breaker open/closed

15 supplementary auxiliary contacts

A flexible cable 650 mm long is available from point "A" to point "B".

Fixed version

Withdrawable version

ATS010

Electronic

time-delay device

Overall dimensions

Circuit-breaker accessories

\square

ABB
 Circuit diagrams

Contents

Reading information - circuit-breakers 8/2
Reading information - Automatic transfer-switch ATS010 8/6
Circuit diagram symbols (IEC 60617 and CEI 3-14 ... 3-26 Standards) 8/7
Circuit diagrams
Circuit-breakers 8/8
Electrical accessories 8/9
Automatic transfer-switch ATS010 8/14

Circuit diagrams

Reading information - circuit-breakers

Operating status shown of the circuit-breakers

The circuit diagram is for the following conditions:

- withdrawable circuit-breaker, open and racked-in
- circuits de-energised
- releases not tripped
- motor operating mechanism with springs discharged.

Versions

The diagram shows a withdrawable circuit-breaker, but is also valid for fixed circuit-breakers.

Fixed version

The control circuits are between terminals XV (connector X is not supplied).
With this version, the applications indicated in figures 31, 32, and 51 cannot be provided.

Withdrawable version

The control circuits are between the poles of connector X (terminal box XV is not supplied).
With this version, the application shown in figure 52 cannot be supplied
Version without overcurrent release
With this version, the applications shown in figures $3,5,13,41,42,43,44,51,52,53,62$ cannot be supplied.
Version with PR111 microprocessor-based release
The PR111 overcurrent release is fitted with the protection unit only.
With this version, the applications shown in figures $3,5,41,42,43,44,53$, 62 cannot be supplied.
Version with PR112/P microprocessor-based release
The PR112/P overcurrent release is fitted with the protection unit only.
With this version, the applications shown in figures $3,5,22,42,43,44,53$ cannot be supplied.
Version with PR112/PD microprocessor-based release
The PR112/PD overcurrent release is fitted with the protection and dialogue unit.
With this version, the applications shown in figures 22, 41, 43, 44, 53 cannot be supplied.
Version with PR113/P microprocessor-based release
The PR113/P overcurrent release is fitted with the protection unit only.
With this version, the applications shown in figures $3,5,22,41,42,44$ cannot be supplied.
Version with PR113/PD microprocessor-based release
The PR113/PD overcurrent release is fitted with the protection and dialogue unit.
With this version, the applications shown in figures $22,41,42,43$ cannot be supplied

Caption

$\square \quad=$ Figure number of diagram
= See the note indicated by the letter
A1 $=$ Circuit-breaker applications
A13 = PR020/K Signalling unit (available only with release PR112/P, PR112/PD, PR113/P or PR113/PD)
A3 = Applications located on the fixed part of the circuit-breaker (available only with withdrawable circuitbreakers)
A4 $\quad=$ Examples of switchgear and connections for control and signalling, outside the circuit-breaker
AY \quad SACE SOR TEST UNIT Test/monitoring Unit (see note R)
D = Electronic time-delay device of the undervoltage release, outside the circuit-breaker
F1 $\quad=$ Delayed-trip fuse
K51 = PR111, PR112/P, PR112/PD, PR113/P or PR113/PD microprocessor-based overcurrent release with the following protection functions (see note G):

- L overload protection with inverse long time-delay trip - setting I1
- S short-circuit protection with inverse or definite short time-delay trip - setting 12
- I short-circuit protection with instantaneous trip - setting I3
- G earth fault protection with inverse short time-delay trip - setting 14
$\mathrm{K} 51 / \mathrm{\mu P}=$ Electrical signalling of alarm due to microprocessor operating faults (only with Uaux. and PR112/P, PR112/PD, PR113/P or PR113/PD release)
K51/1... $8=$ Contacts of the PR020/K signalling unit
K51/GZin = Zone selectivity: input for protection G or "reverse" direction input for protection D
(DBin) (only with Uaux. and PR113/P or PR113/PD release)
K51/GZout = Zone selectivity: output for protection G or "reverse" direction output for protection D
(DBout) (only with Uaux. and PR113/P or PR113/PD release)
K51/P1 = Programmable electrical signalling (only with Uaux. and PR112/P, PR112/PD, PR113/P or PR113/PD release)
K51/P2 = Programmable electrical signalling (only with Uaux. and PR113/P release)
K51/SZin = Zone selectivity: input for protection S or "direct" input for protection D
(DFin) (only with Uaux. and PR113/P or PR113/PD release)

K51/SZout = Zone selectivity: output for protection S or "direct" output for protection D
(DFout) (only with Uaux. and PR113/P or PR113/PD release)
K51/YC = Closing control from PR112/PD or PR113/PD microprocessor-based release
K51/Y0 = Opening control from PR112/PD or PR113/PD microprocessor-based release
K51/Y01 = Electrical alarm signal for release Y01 TRIPPED (only with release PR112/P, PR112/PD, PR113/P or PR113/PD)
K51/Zin = Zone selectivity: input (only with Uaux. and PR112/P or PR112/PD release)
K51/Zout = Zone selectivity: output (only with Uaux. and PR112/P or PR112/PD release)
$\mathrm{M} \quad=$ Motor for charging the closing springs
Q = Circuit-breaker
Q/1... $25=$ Auxiliary contacts of the circuit-breaker
S33M/1 = Limit contact of the spring charging motor
S33M/2 = Contact for the electrical signal of springs charged
S43 = Switch for setting remote/local control
S51 = Contact for the electrical signal of circuit-breaker open due to overcurrent release tripped. The cir-cuit-breaker can only be closed after the reset pushbutton has been pressed.
S75E/14 = Contacts for the electrical signal of circuit-breaker in racked-out position (only with withdrawable circuit-breakers)
S75I/14 = Contacts for the electrical signal of circuit-breaker in racked-in position (only with withdrawable cir-cuit-breakers)
S75T/14 = Contacts for the electrical signal of circuit-breaker in test isolated position (only with withdrawable circuit-breakers)
SC $\quad=$ Pushbutton or contact for closing the circuit-breaker
SO $\quad=$ Pushbutton or contact for opening the circuit-breaker
SO1 = Pushbutton or contact for opening the circuit-breaker with delayed trip
SO2 = Pushbutton or contact for opening the circuit-breaker with instantaneous trip
$\mathrm{T} / / \mathrm{L} 1=$ Current transformer located on phase L1
TI/L2 $=$ Current transformer located on phase L2
TI/L3 $=$ Current transformer located on phase L3
$\mathrm{TI} / \mathrm{N}=$ Current transformer located on neutral
TI/O = Homopolar current transformer located on the conductor that links the transformer star center MV/LV to earth (see note G)
TU = Insulating transformer
Uaux. \quad Auxiliary power supply voltage (see note F)
UI/L1 = Current sensor (Rogowski coil) located on phase L1
UI/L2 = Current sensor (Rogowski coil) located on phase L2
UI/L3 = Current sensor (Rogowski coil) located on phase L3
$\mathrm{Ul} / \mathrm{N} \quad=$ Current sensor (Rogowski coil) located on neutral
W1 = Serial interface with the control system (external bus): EIA RS485 interface (see note E)
W2 $\quad=$ Serial interface with the accessories of PR112/P, PR112/PD, PR113/P and PR113/PD releases (inter-
$X \quad=$ Delivery connector for auxiliary circuits of the withdrawable circuit-breaker
$\mathrm{X}_{1} \ldots \mathrm{X} 7=$ Connectors for circuit-breaker applications
XF = Delivery terminal box for the position contacts of the withdrawable circuit-breaker (located on the fixed part of the circuit-breaker)
XK1 = Connector for the power circuits of the PR111, PR112/P, PR112/PD, PR113/P and PR113/PD releases
XK2 - XK3 = Connectors for the auxiliary circuits of the PR112/P, PR112/PD, PR113/P and PR113/PD releases
$\mathrm{XO}=$ Connector for the release YO1
XV = Delivery terminal box for the auxiliary circuits of the fixed circuit-breaker
YC = Closing release
YO = Opening release
YO1 = Overcurrent shunt opening release
YO2 = Second shunt opening release (see note Q)
$\mathrm{YU} \quad=$ Undervoltage release (see notes B and Q)

Circuit diagrams

Reading information - circuit-breakers

Description of figures

Fig. $1=$ Motor circuit to charge the closing springs
Fig. $2=$ Closing release circuit
Fig. 3 = Closing release circuit controlled by the dialogue unit of the PR112/PD or PR113/PD release
Fig. $4=$ Opening release
Fig. $5=$ Opening release circuit controlled by the dialogue unit of the PR112/PD or PR113/PD release
Fig. 6 = Instantaneous undervoltage release (see notes B and Q)
Fig. $7=$ Undervoltage release with electronic time-delay device, outside the circuit-breaker (see notes B and Q)
Fig. 8 = Second shunt opening release (see note Q)
Fig. 11 = Contact for the electrical signal of springs charged.
Fig. 12 = Contact for the electrical signal of undervoltage release energized (see notes B, L and S)
Fig. 13 = Contact for the electrical signal of circuit-breaker open due to overcurrent release tripped. The circuitbreaker can only be closed after the reset pushbutton has been pressed.
Fig. 21 = First set of circuit-breaker auxiliary contacts
Fig. 22 = Second set of circuit-breaker auxiliary contacts (not available with PR112/P, PR112/PD, PR113/P and PR113/PD releases).
Fig. $23=$ Third set of supplementary auxiliary contacts outside the circuit-breaker
Fig. 31 = First set of contacts for the electrical signal of circuit-breaker in racked-in, test isolated, racked-out position
Fig. 32 = Second set of contacts for the electrical signal of circuit-breaker in racked-in, test isolated, racked-out position
Fig. 41 = Auxiliary circuits of the PR112/P release (see note F)
Fig. 42 = Auxiliary circuits of the PR112/PD release (see notes D, F and M)
Fig. 43 = Auxiliary circuits of the PR113/P release (see note F)
Fig. 44 = Auxiliary circuits of the PR113/PD release (see notes F and M)
Fig. 51 = Circuit of current transformer on neutral conductor outside circuit-breaker, for withdrawable circuit-breaker
Fig. 52 = Circuit of current transformer on neutral conductor outside circuit-breaker, for fixed circuit-breaker (see note C)
Fig. 53 = Circuit valid for three-pole circuit-breaker with PR113/P or PR113/PD release without current transformer on neutral conductor outside circuit-breaker (see note H)
Fig. 61 = SACE SOR TEST UNIT test/monitoring unit (see note R)
Fig. 62 = PR020/K Signalling unit (only with PR112/P, PR112/PD, PR113/P or PR113/PD release)

Incompatibility

The circuits indicated in the following figures cannot be supplied simultaneously on the same circuit-breaker:
2-3
4-5
6-7-8
22-41-42-43-44
31-51
51-52-53

Notes

A) The circuit-breaker is only fitted with the applications specified in the ABB SACE order acknowledgement. Consult this catalogue for information on how to make out an order.
B) The undervoltage release is supplied for operation using a power supply branched on the supply side of the circuit-breaker or from an independent source. The circuit-breaker can only close when the release is energized (there is a mechanical lock on closing).
If the same power supply is used for the closing and undervoltage releases and the circuit-breaker is required to close automatically when the auxiliary power supply comes back on, a 30 ms delay must be introduced between the undervoltage release accept signal and the energizing of the closing release. This can be done by means of a circuit outside the circuit-breaker comprising a permanent make contact, the contact illustrated in figure 12 and a time-delay relay
C) For fixed circuit-breakers with current transformers on the neutral conductors outside the circuit-breakers, the terminals of transformer TI/N must be short-circuited to remove the circuit-breaker.
D) Connect the contact S33M/2 shown in fig. 11, one of the make contacts and one of the break contacts of the circuit-breaker shown in fig. 21 as illustrated in fig. 42.
E) See the following documentation on how to connect the EIA RS485 serial line:

- RH0180 for LON communication
- RH0199 for MODBUS communication
F) The auxiliary voltage Uaux. allows actuation of all operations of the PR112/P, PR112/PD, PR113/P and PR113/PD releases. In this regard, refer to the corresponding user manuals.
G) Earth fault protection is available with the PR112/P, PR112/PD, PR113/P and PR113/PD releases by means of a current transformer located on the conductor connecting the star center of the MV/LV transformer to earth.
The connection between terminals 1 and 2 of the TI / O current transformer and poles T 5 and T 6 of connector X (or XV) must be made with a two-pole shielded and stranded cable (see user manual) no more than 15 m long. The shield must be earthed on the circuit-breaker side and current transformer side.
H) In the case of PR113/P or PR113/PD releases mounted on a three-pole circuit-breaker without connection to the external neutral, poles T3 and T4 of connector X (or XV) should be short-circuited by the customer.
I) The contact may not be used if the PR112/PD or PR113/PD unit is present.
L) The contact may not be used if the PR113/P or PR113/PD unit is present.
M) Connect one of the S 75 I contacts shown in fig. 31 or 51 as illustrated in fig. 42-44. On fixed circuit-breakers, connect terminal XV-K14 directly to terminal XV-K16 (contact S75I does not exist).
N) Connections to the zone selectivity inputs and outputs on PR112/P, 112/PD, PR113/P e PR113/PD releases must be made using a two-pole shielded and stranded cable (see user manual) no more than 300 m long. The shield must be earthed on the selectivity input side.
O) The connection between the voltage sensors (TV) and circuit-breaker on PR113/P and PR113/PD releases must be made using a two-pole shielded and stranded cable (see user manual) no more than 15 m long. The shield must be earthed on both sides (sensor and circuit-breaker).
P) The power supply of coils YO and YC must not be derived from the main power supply on PR112/PD and PR113/ PD releases.
The coils may be controlled directly by contacts $\mathrm{K} 51 / \mathrm{YO}$ and $\mathrm{K} 51 / \mathrm{YC}$ with maximum voltages of 60VDC and 240250VAC for PR112/PD, 240-250VDC and 240-250VAC for PR113/PD.
Q) The second opening release may be installed as an alternative to the undervoltage release.
R) The SACE SOR TEST UNIT + opening release (YO) is guaranteed to operate starting at 75% of the Uaux of the opening release itself.
While the YO power supply contact is closing (short-circuit on terminals 4 and 5), the SACE SOR TEST UNIT is unable to detect the opening coil status.
Thus:
- For continuously powered opening coil, the TEST FAILED and ALARM signals will be activated
- If the coil opening command is of the pulsing type, the TEST FAILED signal may appear at the same time. In this case, the TEST FAILED signal is actually an alarm signal only if it remains lit for more than 20s.
S) Also available in version with normally-closed contact.
T) Configuration valid for four-pole or three-pole circuit-breaker with external neutral. See the manual for additional installation configurations.

Rules to observe when replacing PR111/P, PR112/P, PR112/PD, PR113/P or PR113/PD releases:

- Pay careful attention to the notes provided on the circuit diagrams supplied
- The contact to electrically signal the undervoltage release energized (Fig. 12 of the enclosed diagrams) must be removed from the terminal box.

Circuit diagrams

Reading information - Automatic transfer-switch ATS010

Operating status shown of the Automatic transfer-switch ATS010

The circuit diagram is for the following conditions:

- circuit-breakers open and racked-in \#
- generator not in alarm
- closing springs discharged
- overcurrent relays not tripped \star
- ATS010 not powered
- generator in automatic mode and not started
- generator switching enabled
- circuits de-energised
- logic enabled via input provided (terminal 47).
\# The present diagram shows withdrawable circuit-breakers, but is also valid for fixed circuit-breakers: the auxiliary circuits of the circuit-breakers do not connect to connector X but to terminal box XV; also connect terminal 17 to 20 and terminal 35 to 38 on the ATS010 device.
* The present diagram shows circuit-breakers with overcurrent relays, but is also valid for circuit-breakers without overcurrent relays: connect terminal 18 to 20 and terminal 35 to 37 of the ATS010 device.
@The present diagram shows four-pole circuit-breakers but is also valid for two-pole circuit-breakers: use only terminals 26 and 24 (phase and neutral) for the voltage connection of the normal power supply to the ATS010 device; also use the Q61/2 two-pole rather than four-pole auxiliary protection circuit-breaker.

Caption

A1 = Circuit-breaker applications
A = ATS010 device for automatic switching of two circuit-breakers
F1 = Delayed-trip fuse
K1 = Auxiliary contact for emergency power supply voltage present
K2 = Auxiliary contact for normal supply voltage present
K51/Q1 = Overcurrent relay of the emergency power supply line *
K51/Q2 = Overcurrent relay of the normal power supply line *
M $\quad=$ Motor for charging the closing springs
Q/1 = Auxiliary contact of the circuit-breaker
Q1 = Emergency power supply line circuit-breaker
Q = Normal power supply line circuit-breaker
Q61/1-2 = Thermomagnetic circuit-breakers to isolate and protect the auxiliary circuits @
S11...S16 = Signal contacts for the inputs of the ATS010 device
S33M/1 = Limit contact of the closing springs
S51 = Contact for the electrical signal of circuit-breaker open due to overcurrent relay tripped *
S75I/1 = Contact for the electrical signal of withdrawable circuit-breaker racked-in \#
TI/ ... = Current transformers for the overcurrent relay power supply
X = Connector for the auxiliary circuits of the withdrawable circuit-breaker
XF = Delivery terminal box for the position contacts of the withdrawable circuit-breaker
XV = Delivery terminal box for the auxiliary circuits of the fixed circuit-breaker
YC = Closing release
$\mathrm{YO} \quad=$ Opening release

Note

A) For the auxiliary circuits of the circuit-breakers, see the circuit diagram of the circuit-breaker/accessory. The applications shown in the following figures are required: 1-2-4-13 (only if the overcurrent relay is supplied) - 21 - 31 (only for withdrawable circuit-breakers).

Circuit diagrams

Circuit diagram symbols (IEC 60617 and CEI 3-14 ... 3-26 Standards

Circuit diagrams

Circuit-breakers

Operating status

Three- or four-pole circuit-breaker with microprocessor-based PR111, PR112/P, PR112/PD, PR113P, PR113/PD release

Three- or four-pole switchdisconnector

[^0] current transformer on neutral conductor outside circuit-breaker

Circuit diagrams

Electrical accessories

Motor operating mechanism, opening, closing and undervoltage releases

Signalling contacts

Circuit diagrams

Electrical accessories

Signalling contacts

\square

Auxiliary circuits of the PR112/P release

Auxiliary circuits of the PR112/PD release

Circuit diagrams

Electrical accessories

Auxiliary circuits of the PR113/P release

Auxiliary circuits of the PR113/PD release

PR020/K Signalling unit

Circuit diagrams

Automatic transfer-switch ATS010

WITH AUXILIARY SAFETY POWER SUPPLY

Contents

General information 9/2
SACE Emax automatic circuit-breakers
SACE Emax E1 9/3
SACE Emax E2 9/5
SACE Emax E3 9/7
SACE Emax E4 9/11
SACE Emax E6 9/12
SACE Emax automatic circuit-breakers with full-size neutral conductor
SACE Emax E4/f 9/14
SACE Emax E6/f 9/15
SACE Emax switch-disconnectors
SACE Emax E1/MS 9/16
SACE Emax E2/MS 9/18
SACE Emax E3/MS 9/20
SACE Emax E4/MS 9/22
SACE Emax E6/MS 9/23
SACE Emax E4/f 9/24
SACE Emax E6/f 9/24
SACE Emax automatic circuit-breakers for applications up to 1000V AC
SACE Emax E2/E 9/25
SACE Emax E3/E 9/26
SACE Emax E4/E 9/27
SACE Emax switch-disconnectors for applications up to 1000V AC
SACE Emax E2/E MS 9/28
SACE Emax E3/E MS 9/29
SACE Emax E4/E MS 9/31
SACE Emax switch-disconnectors for applications up to 1000V DC SACE Emax E1/E MS 9/32
SACE Emax E2/E MS 9/33
SACE Emax E3/E MS 9/34
SACE Emax E4/E MS 9/36
SACE Emax CS sectionalizing truck 9/37
SACE Emax MTP earthing switch 9/38
SACE Emax MT earthing truck 9/39
SACE Emax PF fixed parts 9/40
Conversion kit for fixed circuit-breaker or fixed parts 9/41
Modbus ${ }^{\circledR}$ RTU and Lon ${ }^{\circledR}$ Talk dialogue unit 9/42
Current transformers 9/43
SACE Emax accessories 9/44
Microprocessor-based releases and current transformers (when ordered separately) 9/50
Order examples 9/51

Ordering codes

General information

Abbreviations used in switchgear descriptions

F Fixed
W Withdrawable
MP Moving part for withdrawable circuit-breakers
FP Fixed part for withdrawable circuit-breakers

$$
\begin{array}{ll}
\text { PR111/P } & \text { Microprocessor-based electronic release (LI, LSI, LSIG functions) } \\
\text { PR112/P } & \text { Microprocessor-based electronic release (LSI, LSIG functions) } \\
\text { PR113/P } & \text { Microprocessor-based electronic release (LSIG and other functions) }
\end{array}
$$

PR112/PD LON ${ }^{\circledR}$ Microprocessor-based electronic release with dialogue and communication protocol options LON® Talk (LSI, LSIG functions)
PR112/PD Modbus ${ }^{\circledR}$ Microprocessor-based electronic release with dialogue and communication protocol options Modbus® (LSI, LSIG functions)
PR113/PD Modbus ${ }^{\circledR}$ Microprocessor-based electronic release with dialogue and communication protocol options Modbus® (LSIG and other functions)

[^1]
Ordering codes

SACE Emax automatic circuit-breakers

Fixed (F)

E1N 08
Fixed (F)

E1B 12
Fixed (F)

E1N 12
Fixed (F)

$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=800 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=50 \mathrm{kA} \quad \operatorname{Icw}(1 \mathrm{~s})=50 \mathrm{kA}$

HR Horizontal rear terminals								
LI	53753	53760						
LSI	53754	53761	53757	53763				
LSIG	53755	53762	53758	53764	53759	53765		

$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=1250 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=42 \mathrm{KA} \quad \operatorname{Icw}(1 \mathrm{~s})=36 \mathrm{kA}$

HR Horizontal rear terminals									
LI	39092	39205							
LSI	39093	39208	39101	39217					
LSIG	39097	39213	39105	39221	52673	52737			

$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=1250 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=50 \mathrm{KA} \quad \operatorname{lcw}(1 \mathrm{~s})=50 \mathrm{kA}$

HR Horizontal rear terminals													
LI	53766	53772											
LSI	53767	53773	53769	53775									
LSIG	53768	53774	53770	53776	53771	53777							

Ordering codes

SACE Emax automatic circuit-breakers
E1B 08

Withdrawable (W) MP
$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=800 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=42 \mathrm{kA} \quad \operatorname{lcw}(1 \mathrm{~s})=36 \mathrm{kA}$

MP $=$ Moving part						
LI	38978	39066				
LSI	38981	39069	38987	39075		
LSIG	38984	39072	38990	39078	52704	52772

E1N 08
Withdrawable (W) MP
$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=800 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=50 \mathrm{kA} \quad \operatorname{Icw}(1 \mathrm{~s})=50 \mathrm{kA}$

MP $=$ Moving part						
LI	53778	53785				
LSI	53780	53786	53782	53788		53784
LSIG	53781	53787	53783	53789	53790	

E1B 12
Withdrawable (W) MP
$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=1250 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=42 \mathrm{kA} \quad \operatorname{lcw}(1 \mathrm{~s})=36 \mathrm{kA}$

MP $=$ Moving part						
LI	39176	39292				
LSI	39180	39296	39188	39304	52705	52773
LSIG	39184	39300	39192	39308	5205	

E1N 12
Withdrawable (W) MP
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=1250 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=50 \mathrm{KA} \quad \operatorname{Icw}(1 \mathrm{~s})=50 \mathrm{kA}$

MP $=$ Moving part						
LI	53791	53797				
LSI	53792	53798	53794	53800		53802
LSIG	53793	53799	53795	53801	53796	

Ordering codes

SACE Emax automatic circuit-breakers

4 Poles 1SDA0.....R1 3 Poles 4 Poles

E2N 12
Withdrawable (W) MP

E2L 12
Withdrawable (W) MP

E2B 16
Withdrawable(W) -
MP

E2N 16
Withdrawable (W) MP

E2L 16
Withdrawable (W) MP

E2B 20
Withdrawable (W) MP

E2N 20

Withdrawable (W) -

 MP$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=1250 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=65 \mathrm{kA} \quad$ Icw $(1 \mathrm{~s})=55 \mathrm{kA}$

MP $=$ Moving part						
LI	39759	39875				
LSI	39763	39879	39771	39887		
LSIG	39767	39883	39775	39891	52708	52776

$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=1250 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=130 \mathrm{kA} \quad \operatorname{lcw}(1 \mathrm{~s})=10 \mathrm{kA}$

MP = Moving part						
LI	40292	40424				
LSI	40296	40428	40304	40436	52711	52779
LSIG	40300	40432	40308	40440		

$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=1600 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=42 \mathrm{KA} \quad \operatorname{Icw}(1 \mathrm{~s})=42 \mathrm{kA}$

MP $=$ Moving part						
LI	39386	39474				
LSI	39389	39477	39395	39483		52706
LSIG	39392	39480	39398	39486	52706	

$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=1600 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=65 \mathrm{KA} \quad \operatorname{Icw}(1 \mathrm{~s})=55 \mathrm{kA}$

MP $=$ Moving part						
LI	39969	40057				
LSI	39972	40060	39978	40066		
LSIG	39975	40064	39981	40069	52709	52777

$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=1600 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=130 \mathrm{kA} \quad \operatorname{Icw}(1 \mathrm{~s})=10 \mathrm{kA}$

MP $=$ Moving part						
LI	40518	40606				
LSI	40521	40609	40527	40615	52712	52780
LSIG	40524	40612	40530	40618	5	

$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=2000 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=42 \mathrm{kA} \quad \operatorname{lcw}(1 \mathrm{~s})=42 \mathrm{kA}$

MP Moving part						
LI	39562	39650				
LSI	39565	39653	39571	39659		
LSIG	39568	39656	39574	39662	52707	52775

$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=2000 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=65 \mathrm{kA} \quad \operatorname{Icw}(1 \mathrm{~s})=55 \mathrm{KA}$

MP $=$ Moving part						
LI	40145	40211				
LSI	40148	40214	40154	40220	52710	52778
LSIG	40151	40217	40157	40223		

Ordering codes

SACE Emax automatic circuit-breakers

E3N 25
Fixed (F)

E3S 25
Fixed (F)

E3H 25
Fixed (F)

E3L 25
Fixed (F)

E3N 32
Fixed (F)

E3S 32
Fixed (F)

PR111/P
1SDA0.....R1
3 Poles 4 Poles
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=2500 \mathrm{~A}$
$\operatorname{lcu}(415 \mathrm{~V})=65 \mathrm{kA} \quad \operatorname{lcw}(1 \mathrm{~s})=65 \mathrm{kA}$

HR $=$ Horizontal rear terminals							
LI	40649	40709					
LSI	40651	40711	40655	40715	52681	52745	
LSIG	40653	40713	40657	40717			

$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=2500 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=75 \mathrm{KA} \quad \operatorname{lcw}(1 \mathrm{~s})=75 \mathrm{kA}$

HR = Horizontal rear terminals						
LI	41249	41309				
LSI	41251	41311	41255	41315		
LSIG	41253	41313	41257	41317	52686	52750

$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=\mathbf{2 5 0 0} \mathrm{A} \quad \operatorname{Icu}(415 \mathrm{~V})=100 \mathrm{kA} \quad \operatorname{Icw}(1 \mathrm{~s})=75 \mathrm{kA}$

HR $=$ Horizontal rear terminals						
LI	41849	41909				
LSI	41851	41911	41855	41915	52691	52755
LSIG	41853	41913	41857	41917	5260	

$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=\mathbf{2 5 0 0} \mathrm{A} \quad \operatorname{Icu}(415 \mathrm{~V})=130 \mathrm{kA} \quad \operatorname{lcw}(1 \mathrm{~s})=15 \mathrm{kA}$

HR = Horizontal rear terminals						
LI	42209	42269				
LSI	42211	42271	42215	42275		
LSIG	42213	42273	42217	42277	52694	52759

$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=3200 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=65 \mathrm{KA} \quad \operatorname{Icw}(1 \mathrm{~s})=65 \mathrm{kA}$

HR $=$ Horizontal rear terminals							
LI	40784	43373					
LSI	40786	43375	40790	43379	52682	52746	
LSIG	40788	43377	40792	43381			

$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=3200 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=75 \mathrm{KA} \quad \operatorname{Icw}(1 \mathrm{~s})=75 \mathrm{kA}$

HR $=$ Horizontal rear terminals							
LI	41369	41429					
LSI	41371	41431	41375	41435	52687	52751	
LSIG	41373	41433	41377	41437			

E3H 32

Fixed (F)

9

HR	$=$ Horizontal rear terminals	
LI	41969	42

Fixed parts page 9/40 Terminals page 9/41 Dialogue unit page 9/42 Current transformers....... page 9/43

Ordering codes

SACE Emax automatic circuit-breakers

E3N 25
Withdrawable (W) MP

E3S 25
Withdrawable (W) MP

E3H 25
Withdrawable (W) MP

E3L 25
Withdrawable (W) MP

E3N 32
Withdrawable (W) MP

E3S 32
Withdrawable (W) MP
$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=3200 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=75 \mathrm{kA} \quad \operatorname{Icw}(1 \mathrm{~s})=75 \mathrm{kA}$

MP = Moving part						
LI	41414	41474				
LSI	41416	41476	41420	41480		
LSIG	41418	41478	41422	41482	52719	52787

E3H 32
Withdrawable (W) MP
$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=3200 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=100 \mathrm{kA} \quad \operatorname{lcw}(1 \mathrm{~s})=75 \mathrm{kA}$

MP $=$ Moving part						
LI	42014	42074				
LSI	42016	42076	42020	42080	52724	52792
LSIG	42018	42078	42022	42082	5272	

[^2]$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=2500 \mathrm{~A} \quad$ Icu $(415 \mathrm{~V})=75 \mathrm{kA} \quad$ Icw (1 s) $=75 \mathrm{kA}$

MP $=$ Moving part						
LI	41294	41354				
LSI	41296	41356	41300	41360		
LSIG	41298	41358	41302	41362	52718	52786

$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=2500 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=100 \mathrm{kA} \quad \operatorname{lcw}(1 \mathrm{~s})=75 \mathrm{kA}$

MP $=$ Moving part						
LI	41894	41954				
LSI	41896	41956	41900	41960	52723	52791
LSIG	41898	41958	41902	41962	52723	

$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=2500 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=100 \mathrm{kA} \quad \operatorname{lcw}(1 \mathrm{~s})=15 \mathrm{kA}$

MP $=$ Moving part						
LI	42254	42314				
LSI	42256	42316	42260	42320		
LSIG	42258	42318	42262	42322	52726	52794

$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=3200 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=65 \mathrm{kA} \quad \operatorname{Icw}(1 \mathrm{~s})=65 \mathrm{kA}$

MP Moving part						
LI	40829	40874				
LSI	40831	40876	40835	40880		
LSIG	40833	40878	40837	40882	52714	52782

Terminals page 9/41 Dialogue unit page 9/42 Current transformers page 9/43

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Ordering codes

SACE Emax automatic circuit-breakers

E6V 32
Fixed (F)

E6V 40
Fixed (F)

E6H 50
Fixed (F)

E6V 50
Fixed (F)

E6H 63
Fixed (F)

E6V 63
Fixed (F)

PR111/P
1SDA0.....R1
3 Poles 4 Poles

PR112/P
1SDA0.....R1 3 Poles 4 Poles

PR113/P
1SDA0.....R1
3 Poles
$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=3200 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=150 \mathrm{kA} \quad \operatorname{lcw}(1 \mathrm{~s})=100 \mathrm{kA}$

HR Horizontal rear terminals													
LI	42914	42946											
LSI	42915	42947	42917	42949									
LSIG	42916	42948	42918	42950	52700	52768							

$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=4000 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=150 \mathrm{KA} \quad \operatorname{Icw}(1 \mathrm{~s})=100 \mathrm{kA}$

HR Horizontal rear terminals												
LI	42979	43039										
LSI	42981	43041	42985	43045								
LSIG	42983	43043	42987	43047	52701	52769						

$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=5000 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=100 \mathrm{kA} \quad \operatorname{Icw}(1 \mathrm{~s})=100 \mathrm{kA}$

HR = Horizontal rear terminals						
LI	42675	42735				
LSI	42677	42737	42681	42741		
LSIG	42679	42739	42683	42743	52698	52764

$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=5000 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=150 \mathrm{KA} \quad \operatorname{Icw}(1 \mathrm{~s})=100 \mathrm{KA}$

HR Horizontal rear terminals										
LI	43099	43159								
LSI	43101	43161	43105	43165						
LSIG	43103	43163	43107	43167	52702	52770				

$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=6300 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=100 \mathrm{kA} \quad \operatorname{lcw}(1 \mathrm{~s})=100 \mathrm{kA}$

HR = Horizontal rear terminals						
LI	42795	42855				
LSI	42797	42857	42801	42861		
LSIG	42799	42859	42803	42863	52699	52765

$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=6300 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=150 \mathrm{kA} \quad \operatorname{lcw}(1 \mathrm{~s})=100 \mathrm{kA}$

HR = Horizontal rear terminals						
LI	43219	43279				
LSI	43221	43281	43225	43285		
LSIG	43223	43283	43227	43287	52703	52771

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Fixed (F)

Ordering codes

SACE Emax automatic circuit-breakers with full-size neutral conductor

E4S/f 40
Withdrawable (W) MP
$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=4000 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=80 \mathrm{kA} \quad \operatorname{lcw}(1 \mathrm{~s})=80 \mathrm{kA}$

MP $=$ Moving part			
LI	48695		
LSI	48696	48698	52796
LSIG	48697	48699	

E6S/f 50
Fixed (F)

E6H/f 63
Fixed (F)

PR112/P PR113/P
1SDA0.....R1
4 Poles

1SDA0.....R1 4 Poles
$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=5000 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=100 \mathrm{KA} \quad \operatorname{Icw}(1 \mathrm{~s})=100 \mathrm{kA}$

HR $=$ Horizontal rear terminals			
LI	50767		
LSI	50768	50770	52766
LSIG	50769	50771	

$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=6300 \mathrm{~A} \quad \mathrm{Icu}(415 \mathrm{~V})=100 \mathrm{kA} \quad \operatorname{Icw}(1 \mathrm{~s})=100 \mathrm{kA}$

HR $=$ Horizontal rear terminals			
LI	50788		
LSI	50789	50791	52767
LSIG	50790	50792	

$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=5000 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=100 \mathrm{kA} \quad \operatorname{Icw}(1 \mathrm{~s})=100 \mathrm{kA}$

MP = Moving part			
LI	50781		
LSI	50782	50784	52801
LSIG	50783	50785	

$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=6300 \mathrm{~A} \quad \operatorname{Icu}(415 \mathrm{~V})=100 \mathrm{kA} \quad \operatorname{lcw}(1 \mathrm{~s})=100 \mathrm{kA}$
E6H/f 63
Withdrawable (W) MP

| MP Moving part
 LI 50803 50806
 LSI 50804 50807
 LSIG 50805 52802 | | |
| :--- | :--- | :--- | :--- |

Ordering codes

SACE Emax switch-disconnectors

			$\begin{aligned} & \text { 1SDAO......R1 } \\ & \text { 3 Poles } \end{aligned}$	4 Poles
E1B/MS 08	Iu ($40^{\circ} \mathrm{C}$) $=800 \mathrm{~A}$	Icw (1s) $=36 \mathrm{kA}$		
Withdrawable (W) MP	MP = Moving part			
			37639	37642
E1N/MS 08	$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=800 \mathrm{~A}$	Icw (1s) $=\mathbf{5 0} \mathbf{~ k A}$		
Withdrawable (W) MP	MP = Moving part			
			53807	53808
E1B/MS 12	$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=1250 \mathrm{~A} \quad \mathrm{Icw}(1 \mathrm{~s})=36 \mathrm{kA}$			
Withdrawable(W) MP	MP = Moving part		37640	37641
E1N/MS 12	$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=1250 \mathrm{~A}$	lcw (1s) = $50 \mathbf{k A}$		
Withdrawable (W) MP	MP = Moving part			
			53809	53810

Ordering codes

SACE Emax switch-disconnectors

E2N/MS 12
Fixed (F)
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=1250 \mathrm{~A} \quad \mathrm{lcw}(1 \mathrm{~s})=55 \mathrm{kA}$

HR $=$ Horizontal rear terminals		
	37531	37559

$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=1600 \mathrm{~A} \quad \mathrm{lcw}(1 \mathrm{~s})=42 \mathrm{kA}$
HR = Horizontal rear terminals
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=1600 \mathrm{~A} \quad \mathrm{Icw}(1 \mathrm{~s})=55 \mathrm{kA}$

HR $=$ Horizontal rear terminals		
	37532	37560

$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=2000 \mathrm{~A} \quad \mathrm{lcw}(1 \mathrm{~s})=42 \mathrm{kA}$
HR = Horizontal rear terminals
37530
37558

E2N/MS 20
Fixed (F)
E2B/MS 16
Fixed (F)

E2N/MS 16
Fixed (F)

E2B/MS 20
Fixed (F)
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=2000 \mathrm{~A} \quad \mathrm{Icw}(1 \mathrm{~s})=55 \mathrm{kA}$
HR = Horizontal rear terminals

1SDA0.....R1 3 Poles

4 Poles

E2N/MS 12
Withdrawable (W) MP

E2B/MS 16
Withdrawable (W) MP

E2N/MS 16

Withdrawable (W) MP

E2B/MS 20

Withdrawable (W) MP

E2N/MS 20
Withdrawable (W) -
MP
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=1250 \mathrm{~A} \quad \mathrm{Icw}(1 \mathrm{~s})=55 \mathrm{kA}$

MP $=$ Moving part		

$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=1600 \mathrm{~A} \quad$ Icw (1s) $=42 \mathrm{kA}$
MP = Moving part

	37646	37643

$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=1600 \mathrm{~A} \quad \mathrm{lcw}(1 \mathrm{~s})=55 \mathrm{kA}$

| MP $=$ Moving part | | |
| :--- | :--- | :--- | :--- |

$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=2000 \mathrm{~A} \quad \mathrm{lcw}(1 \mathrm{~s})=42 \mathrm{kA}$
MP = Moving part
37645
37644
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=2000 \mathrm{~A} \quad \mathrm{Icw}(1 \mathrm{~s})=55 \mathrm{kA}$
MP = Moving part
37649
37650

E3S/MS 12
Fixed (F)

E3S/MS 16
Fixed (F)

E3S/MS 20
Fixed (F)

E3N/MS 25
Fixed (F)

E3S/MS 25
Fixed (F)

E3N/MS 32
Fixed (F)

E3S/MS 32
Fixed (F)

Ordering codes
SACE Emax switch-disconnectors
\qquad
$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=1250 \mathrm{~A} \quad \mathrm{Icw}(1 \mathrm{~s})=75 \mathrm{kA}$
HR = Horizontal rear terminals
37536
37564
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=1600 \mathrm{~A} \quad \mathrm{lcw}(1 \mathrm{~s})=75 \mathrm{kA}$

HR $=$ Horizontal rear terminals		
	37537	37565

$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=2000 \mathrm{~A} \quad \mathrm{Icw}(1 \mathrm{~s})=75 \mathrm{KA}$

HR $=$ Horizontal rear terminals		

$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=\mathbf{2 5 0 0 \mathrm { A } \quad \mathrm { lcw } (1 \mathrm { s }) = 6 5 \mathrm { kA }}$

$\mathrm{HR}=$ Horizontal rear terminals		

3734
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=2500 \mathrm{~A} \quad \mathrm{Icw}(1 \mathrm{~s})=75 \mathrm{kA}$
HR = Horizontal rear terminals

	37539	37567

$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=3200 \mathrm{~A} \quad \mathrm{Icw}(1 \mathrm{~s})=65 \mathrm{kA}$

| HR $=$ Horizontal rear terminals | | |
| :--- | :--- | :--- | :--- |
| | 37535 | 37563 |

$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=3200 \mathrm{~A} \quad \mathrm{Icw}(1 \mathrm{~s})=75 \mathrm{kA}$
HR = Horizontal rear terminals

| HR $=$ Horizontal rear terminals | | |
| :--- | :--- | :--- | :--- |
| | 37540 | 37568 |

Fixed (F)

E4S/MS 40
Fixed (F)

E4H/MS 40
Fixed (F)

E4H/MS 32
Withdrawable (W) MP

E4S/MS 40
Withdrawable (W) MP

E4H/MS 40
$\begin{aligned} & \text { Withdrawable (W) - } \\ & \text { MP }\end{aligned}$

1SDA0.....R1 3 Poles

4 Poles
$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=3200 \mathrm{~A} \quad \mathrm{lcw}(1 \mathrm{~s})=100 \mathrm{kA}$

HR $=$ Horizontal rear terminals		
	37547	37575

$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=4000 \mathrm{~A} \quad \mathrm{Icw}(1 \mathrm{~s})=75 \mathrm{kA}$

HR $=$ Horizontal rear terminals		

$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=4000 \mathrm{~A} \quad \mathrm{Icw}(1 \mathrm{~s})=100 \mathrm{kA}$

$\mathrm{HR}=$ Horizontal rear terminals	37548	37576

Ordering codes
SACE Emax switch-disconnectors
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=4000 \mathrm{~A} \quad \mathrm{Icw}(1 \mathrm{~s})=75 \mathrm{kA}$

| MP = Moving part | | |
| :--- | :--- | :--- | :--- |

$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=4000 \mathrm{~A} \quad \mathrm{Icw}(1 \mathrm{~s})=100 \mathrm{kA}$
MP = Moving part
$\overline{M P}=$ Moving part
$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=3200 \mathrm{~A} \quad \mathrm{Icw}(1 \mathrm{~s})=100 \mathrm{kA}$

MP = Moving part	37682	37679

37682
,
$\begin{array}{llll}3768 & 37\end{array}$

Fixed (F)

E6H/MS 63
Fixed (F)

1SDA0.....R1
3 Poles

4 Poles

$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=5000 \mathrm{~A} \quad \mathrm{Icw}(1 \mathrm{~s})=100 \mathrm{kA}$

HR $=$ Horizontal rear terminals		
	37549	37577

$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=6300 \mathrm{~A} \quad \mathrm{Icw}(1 \mathrm{~s})=100 \mathrm{kA}$
$H R=$ Horizontal rear terminals
37550
37578

E6H/MS 50
Withdrawable (W) -
MP

E6H/MS 63
Withdrawable (W) -
MP
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=6300 \mathrm{~A} \quad \mathrm{Icw}(1 \mathrm{~s})=100 \mathrm{kA}$
MP = Moving part

37683
37686
MP = Moving part
\longrightarrow

Ordering codes

SACE Emax switch-disconnectors

Fixed (F)

E4S/f MS 40
Withdrawable (W) MP

E6H/f MS 50
Fixed (F)

E6H/f MS 63
Fixed (F)
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=6300 \mathrm{~A} \quad \mathrm{lcw}(1 \mathrm{~s})=100 \mathrm{kA}$
HR = Horizontal rear termina
50813

E6H/f MS 50
Withdrawable (W) -
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=5000 \mathrm{~A} \quad \mathrm{Icw}(1 \mathrm{~s})=100 \mathrm{kA}$
MP = Moving part
MP

E6H/f MS 63
Withdrawable (W) MP

1SDA0.....R1 4 Poles
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=5000 \mathrm{~A} \quad \mathrm{Icw}(1 \mathrm{~s})=100 \mathrm{kA}$
HR = Horizontal rear terminals
50810

Ordering codes

SACE Emax automatic circuit-breakers for applications up to 1000 V AC

E2B/E 20

E2N/E 12
$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=1250 \mathrm{~A} \quad \mathrm{Icu}(1000 \mathrm{VAC})=30 \mathrm{KA}$

Note: to be specified in addition to the code of the standard version E2N 12 circuit-breaker (Ue=690 V AC) page 9/5 and 9/6

E2N/E 16
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=1600 \mathrm{~A} \quad \mathrm{Icu}(1000 \mathrm{VAC})=30 \mathrm{kA}$

	48530

Note: to be specified in addition to the code of the standard version E2N 16 circuit-breaker (Ue=690 V AC) page 9/5 and 9/6

E2N/E 20
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=\mathbf{2 0 0 0} \mathrm{A} \quad \mathrm{Icu}(1000 \mathrm{VAC})=30 \mathrm{kA}$
$\square 48531$
Note: to be specified in addition to the code of the standard version E2N 20 circuit-breaker (Ue=690 V AC) page 9/5 and 9/6

Ordering codes

SACE Emax automatic circuit-breakers for applications up to 1000 V AC

E3H/E 12

E3H/E 16

E3H/E 20
$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=2000 \mathrm{~A} \quad \operatorname{Icu}(1000 \mathrm{VAC})=50 \mathrm{kA}$
48534
Note: to be specified in addition to the code of the standard version E3H 20 circuit-breaker (Ue=690 V AC) page 9/7 and 9/9

E3H/E 25
$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=\mathbf{2 5 0 0} \mathrm{A} \quad \operatorname{Icu}(1000 \mathrm{VAC})=50 \mathrm{kA}$

	48535

Note: to be specified in addition to the code of the standard version E3H 25 circuit-breaker (Ue=690 V AC) page 9/8 and 9/10
$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=3200 \mathrm{~A} \quad \mathrm{Icu}(1000 \mathrm{VAC})=50 \mathrm{kA}$

Note: to be specified in addition to the code of the standard version E3H 32 circuit-breaker (Ue=690 V AC) page 9/8 and 9/10

E4H/E 40
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=3200 \mathrm{~A} \quad \mathrm{Icu}(1000 \mathrm{VAC})=65 \mathrm{kA}$
48537
Note: to be specified in addition to the code of the standard version E 4 H 32 circuit-breaker ($\mathrm{Ue}=690 \mathrm{~V}$ AC) page 9/11
$\mathrm{Iu}\left(40^{\circ} \mathrm{C}\right)=4000 \mathrm{~A} \quad \mathrm{Icu}(1000 \mathrm{VAC})=65 \mathrm{kA}$
$\square 48538$

Note: to be specified in addition to the code of the standard version E4H 40 circuit-breaker (Ue=690 V AC) page 9/11

Ordering codes

SACE Emax switch-disconnectors for applications up to 1000 V AC

E2B/E MS 16

$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=1600 \mathrm{~A} \quad \operatorname{lcw}(1 \mathrm{~s})=20 \mathrm{kA}$

E2B/E MS 20
$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=2000 \mathrm{~A} \quad \mathrm{Icw}(1 \mathrm{~s})=20 \mathrm{kA}$

Note: to be specified in addition to the code of the standard version E2B/MS 20 circuit-breaker (Ue=690 V AC) page 9/18 and 9/19
E2N/E MS 12
$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=\mathbf{1 2 5 0} \mathrm{A} \quad \operatorname{lcw}(1 \mathrm{~s})=\mathbf{3 0} \mathrm{kA}$
Note: to be specified in addition to the code of the standard version E2N/MS 12 circuit-breaker (Ue=690 V AC) page 9/18 and 9/19 48529
E2N/E MS 16
$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=1600 \mathrm{~A} \quad \operatorname{lcw}(1 \mathrm{~s})=\mathbf{3 0} \mathrm{kA}$

Note: to be specified in addition to the code of the standard version E2N/MS 16 circuit-breaker (Ue=690 $\vee \mathrm{AC}$) page 9/18 and 9/19

E2N/E MS 20
$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=2000 \mathrm{~A} \quad \mathrm{Icw}(1 \mathrm{~s})=30 \mathrm{kA}$

Note: to be specified in addition to the code of the standard version E2N/MS 20 circuit-breaker (Ue=690 V AC) page 9/18 and 9/19

1SDA0.....R1
3 Poles 4 Poles

E3H/E MS 12
Fixed (F)
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=1250 \mathrm{~A} \quad \mathrm{lcw}(1 \mathrm{~s})=50 \mathrm{kA}$

| HR $=$ Horizontal rear terminals | | |
| :--- | :--- | :--- | :--- |
| Circuit-breaker code | 37541 | 37569 |
| CAdditional code to be specified with the circuit-breaker | 48532 | 48532 |

E3H/E MS 16
Fixed (F)
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=1600 \mathrm{~A} \quad \mathrm{lcw}(1 \mathrm{~s})=50 \mathrm{kA}$

| HR $=$ Horizontal rear terminals | | |
| :--- | :--- | ---: | :--- |
| Circuit-breaker code | 37542 | 37570 |
| Additional code to be specified with the circuit-breaker | 48533 | 48533 |

E3H/E MS 20
Fixed (F)
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=2000 \mathrm{~A} \quad \operatorname{lcw}(1 \mathrm{~s})=50 \mathrm{kA}$

| HR $=$ Horizontal rear terminals | | |
| :--- | :--- | :--- | :--- |
| Circuit-breaker code | 37543 | 37571 |
| Additional code to be specified with the circuit-breaker | 48534 | 48534 |

E3H/E MS 25
Fixed (F)
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=2500 \mathrm{~A} \quad \mathrm{lcw}(1 \mathrm{~s})=50 \mathrm{kA}$

HR $=$ Horizontal rear terminals			
Circuit-breaker code	37544	37572	
Additional code to be specified with the circuit-breaker	48535	48535	

E3H/E MS 32
Fixed (F)
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=3200 \mathrm{~A} \quad \mathrm{Icw}(1 \mathrm{~s})=50 \mathrm{kA}$
HR = Horizontal rear terminals

| Circuit-breaker code | 37545 | 37573 |
| :--- | :--- | :--- | :--- |
| Additional code to be specified with the circuit-breaker | 48536 | 48536 |

Ordering codes

SACE Emax switch-disconnectors for applications up to 1000 V AC

E3H/E MS 12
Withdrawable (W) -
MP

E3H/E MS 16
Withdrawable (W) MP

E3H/E MS 20
Withdrawable (W) MP
$\mathrm{l}\left(40^{\circ} \mathrm{C}\right)=2000 \mathrm{~A} \quad \operatorname{Icw}(1 \mathrm{~s})=50 \mathrm{kA}$

MP $=$ Moving part		
Circuit-breaker code	37674	37669
Additional code to be specified with the circuit-breaker	48534	48534

E3H/E MS 25
Withdrawable (W) MP

E3H/E MS 32
Withdrawable (W) MP

1SDA0.....R1 3 Poles 4 Poles
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=1250 \mathrm{~A} \quad \operatorname{lcw}(1 \mathrm{~s})=50 \mathrm{kA}$

MP $=$ Moving part		
Circuit-breaker code	37676	37667
Additional code to be specified with the circuit-breaker	48532	48532

$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=1600 \mathrm{~A} \quad \mathrm{lcw}(1 \mathrm{~s})=50 \mathrm{kA}$

MP = Moving part		
Circuit-breaker code	37675	37668
Additional code to be specified with the circuit-breaker	48533	48533

$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=2500 \mathrm{~A} \quad \mathrm{Icw}(1 \mathrm{~s})=50 \mathrm{kA}$

MP = Moving part		
Circuit-breaker code	37673	37670
Additional code to be specified with the circuit-breaker	48535	48535

$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=3200 \mathrm{~A} \quad \operatorname{lcw}(1 \mathrm{~s})=50 \mathrm{kA}$

MP = Moving part		
Circuit-breaker code	37672	37671
Additional code to be specified with the circuit-breaker	48536	48536

$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=3200 \mathrm{~A} \quad \operatorname{lcw}(1 \mathrm{~s})=65 \mathrm{kA}$

Note: to be specified in addition to the code of the standard version E4H/MS 32 circuit-breaker (Ue=690 $\vee \mathrm{AC}$) page 9/22

E4H/E MS 40
$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=4000 \mathrm{~A} \quad \mathrm{Icw}(1 \mathrm{~s})=65 \mathrm{kA}$
48538
Note: to be specified in addition to the code of the standard version E4H/MS 40 circuit-breaker (Ue=690 V AC) page 9/22

Ordering codes

SACE Emax switch-disconnectors for applications up to 1000 V DC

1SDA0.....R1

E2N/E MS 12
Fixed (F)

E2N/E MS 16
Fixed (F)

E2N/E MS 20
Fixed (F)

E2N/E MS 12
Withdrawable (W) MP

E2N/E MS 16
Withdrawable (W) MP

E2N/E MS 20
Withdrawable (W) -
MP
$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=1250 \mathrm{~A} \quad \operatorname{lcw}(1 \mathrm{~s})=25 \mathrm{kA}$

HR $=$ Horizontal rear terminals		
	50619	50609

$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=1600 \mathrm{~A} \quad \operatorname{lcw}(1 \mathrm{~s})=25 \mathrm{kA}$
HR = Horizontal rear terminals
$50620 \quad 50610$
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=2000 \mathrm{~A} \quad \mathrm{Icw}(1 \mathrm{~s})=25 \mathrm{kA}$
HR = Horizontal rear terminals
50621
50611
$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=1250 \mathrm{~A} \quad \operatorname{lcw}(1 \mathrm{~s})=25 \mathrm{kA}$

MP = Moving part	50641	50631

$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=1600 \mathrm{~A} \quad \operatorname{lcw}(1 \mathrm{~s})=\mathbf{2 5} \mathrm{kA}$
MP = Moving part
$\longrightarrow{ }^{50642}$
50642
50632
$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=\mathbf{2 0 0 0} \mathrm{A} \quad \operatorname{lcw}(1 \mathrm{~s})=\mathbf{2 5} \mathrm{kA}$
MP = Moving part
$\begin{array}{lll} & 50643 & 50633\end{array}$

Ordering codes

SACE Emax switch-disconnectors for applications up to 1000 V DC

E3H/E MS 12

Fixed (F)

E3H/E MS 16
Fixed (F)

E3H/E MS 20
Fixed (F)

E3H/E MS 25
Fixed (F)

E3H/E MS 32
Fixed (F)

1SDA0.....R1
3 Poles 750V DC
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=1250 \mathrm{~A} \quad \operatorname{lcw}(1 \mathrm{~s})=40 \mathrm{kA}$

HR $=$ Horizontal rear terminals		
	50622	50612

$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=1600 \mathrm{~A} \quad \operatorname{lcw}(1 \mathrm{~s})=40 \mathrm{kA}$
HR = Horizontal rear terminals
50623
$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=2000 \mathrm{~A} \quad \operatorname{lcw}(1 \mathrm{~s})=40 \mathrm{kA}$
HR = Horizontal rear terminals
50624
50614
$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=\mathbf{2 5 0 0} \mathrm{A} \quad \operatorname{lcw}(1 \mathrm{~s})=40 \mathrm{kA}$
HR = Horizontal rear terminals
50625
50615
$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=3200 \mathrm{~A} \quad \operatorname{lcw}(1 \mathrm{~s})=40 \mathrm{kA}$
HR = Horizontal rear terminals

	50626	50616

E3H/E MS 12
Withdrawable (W) MP

E3H/E MS 16
Withdrawable (W) MP

E3H/E MS 20
Withdrawable (W) -

MP

E3H/E MS 25
Withdrawable (W) MP

E3H/E MS 32
Withdrawable (W) MP
$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=\mathbf{2 5 0 0 ~ A \quad l c w}(1 \mathrm{~s})=40 \mathrm{kA}$
MP = Moving part

50647
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=3200 \mathrm{~A} \quad \mathrm{lcw}(1 \mathrm{~s})=40 \mathrm{kA}$
MP = Moving part
$\longrightarrow \quad 50648 \quad 50638$

50648

Ordering codes

SACE Emax switch-disconnectors for applications up to 1000 V DC

E4H/E MS 32
Fixed (F)

E4H/E MS 40
Fixed (F)
E4H/E MS 32
Withdrawable (W) -

E4H/E MS 40
Withdrawable (W) MP

1SDA0.....R1
3 Poles
750V DC
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=3200 \mathrm{~A} \quad \mathrm{lcw}(1 \mathrm{~s})=65 \mathrm{kA}$

HR $=$ Horizontal rear terminals	50627

$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=4000 \mathrm{~A} \quad \operatorname{lcw}(1 \mathrm{~s})=65 \mathrm{kA}$
HR = Horizontal rear terminals
50628
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=800 \mathrm{~A} \quad \mathrm{Icw}(1 \mathrm{~s})=65 \mathrm{kA}$
MP = Moving part
MP = Moving part 50649
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=800 \mathrm{~A} \quad \mathrm{Icw}(1 \mathrm{~s})=65 \mathrm{kA}$
MP = Moving part

Ordering codes

SACE Emax CS sectionalizing truck

1SDA0.....R1
3 Poles
4 Poles

E1/CS 12
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=1250 \mathrm{~A}$
Withdrawable (W) -
MP = Moving part
MP

E2/CS 20
Withdrawable (W) -
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=2000 \mathrm{~A}$
MP = Moving part
MP

E3/CS 32	$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=3200 \mathrm{~A}$
Withdrawable (W) -	MP = Moving part
MP	37763

E6/CS 63
Withdrawable (W) -
MP

$$
\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=6300 \mathrm{~A}
$$

MP $=$ Moving part		

Ordering codes

SACE Emax MTP earthing switch

E2 MTP 20
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=2000 \mathrm{~A}$
Withdrawable (W) MP

MP = Moving part				
	37786	37787	37794	37795

E3 MTP 32
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=3200 \mathrm{~A}$
Withdrawable (W) MP

MP = Moving part				
	37789	37788	37796	37797

E4 MTP 40
Withdrawable (W) MP
$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=4000 \mathrm{~A}$

MP $=$ Moving part				
	37790	37791	37798	37799

E6 MTP 63
Withdrawable (W) -
MP

$\operatorname{lu}\left(40^{\circ} \mathrm{C}\right)=6300 \mathrm{~A}$

MP = Moving part				
	37792	37793	37800	37801

Ordering codes

SACE Emax MTP earthing switch

E1 MT 12
Withdrawable (W) MP
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=1250 \mathrm{~A}$

MP = Moving part				
	37754	37755	37756	37757

E2 MT 20
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=2000 \mathrm{~A}$
Withdrawable (W) MP

MP = Moving part				
	37770	37771	37785	37784

E3 MT 32
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=3200 \mathrm{~A}$
Withdrawable (W) MP

MP = Moving part				
	37773	37772	37782	37783

E4 MT 40
$\mathrm{lu}\left(40^{\circ} \mathrm{C}\right)=4000 \mathrm{~A}$
Withdrawable (W) MP

MP = Moving part

E6 MT 63
Withdrawable (W) MP
$\mathrm{Iu}\left(40^{\circ} \mathrm{C}\right)=6300 \mathrm{~A}$

MP = Moving part				
	37777	37776	37778	3779

Ordering codes
SACE Emax MT earthing truck

E2	PF = Fixed part				
	HR	37822	37827	50661	50652
Withdrawable (W) -	VR	37873	37886	50665	50655
PF	F	37923	37928		
	FL	37973	37978	50669	50658

E3	PF = Fixed part				
	HR	37823	37828	50662	50653
Withdrawable (W)	VR	37874	37878	50666	50656
PF	F	37924	37929		
	FL	37974	37979	50670	50659

E4	PF = Fixed part			
Withdrawable (W)	HR	37824	37829	50663
Withdrawa	VR	37875	37879	50667
PF	F	37925	37930	
	FL	37975	37980	50671

E4/f
Withdrawable (W) -
PF

PF $=$ Fixed part	
HR	48702
VR	48707
F	48712
FL	48717

1SDA0.....R1
3 Poles 4 Poles

Conversion kit
for fixed circuitbreaker and fixed parts

Kit for converting fixed circuit-breaker with horizontal rear terminals to vertical rear terminals		
E1	38052	38057
E2	38053	38058
E4	38054	38059
E6	38055	38060
E4/f	38056	38061
E6/f	-	48720

Note:
Each kit fits both upper and lower applications. To convert a complete fixed part, order 2 kits. For instructions, see page $9 / 51$.

Kit for converting fixed circuit-breaker with horizontal rear terminals to front terminals		
E1	38062	38067
E2	38063	38068
E3	38064	38069
E4	38065	38070
E4/f	38066	38071
E6/f	-	48719

Note:
Each kit fits both upper and lower applications. To convert a complete circuit-breaker, order 2 kits. For instructions, see page 9/51.

Kit for converting fixed parts with horizontal rear terminals to front terminals		
E1		38062
E2	45031	48067
E3	45035	45036
E6	45033	45037
E4/f	45034	45038
E6/f	-	48718

Each kit fits both upper and lower applications. To convert a complete circuit-breaker, order 2 kits.
For instructions, see page 9/51.

Ordering codes

Modbus ${ }^{\circledR}$ RTU and Lon ${ }^{\circledR}$ Talk dialogue unit
\qquad

$\frac{\text { Dialogue unit }}{\text { PR112/PD-PR113/PD }}$

	Modbus $^{\circledR}$ RTU LON $^{\circledR}$ Talk	Modbus $^{\circledR}$ RTU	
LSI	52659	52661	-
LSIG	52660	52662	52663

Note: to be specified only in addition to the code of the automatic circuit-breaker, with analogous overcurrent release (PR112/P and PR113/P). To order the release separately, see page $9 / 50$.
For instructions, see page $9 / 51$.

Ordering codes

Current transformers

1SDAO.....R1 4 Poles
3 Poles

E1-E2

$\mathrm{n}=250 \mathrm{~A}$	52574	52579
$\mathrm{In}=400 \mathrm{~A}$	52575	52580
$\mathrm{n}=800 \mathrm{~A}$	52576	52581
$\mathrm{n}=1000 \mathrm{~A}$	52577	52582
$\mathrm{ln}=1250 \mathrm{~A}$	52578	52583
$\mathrm{n}=1600 \mathrm{~A}$	53811	53812

Note: to be specified only in addition to the code of the automatic circuit-breaker.
To order the transformers separately, see page 9/50. For instructions, see page 9/51
E3

$\mathrm{n}=250 \mathrm{~A}$	52584	52591
$\mathrm{In}=400 \mathrm{~A}$	52585	52592
$\mathrm{n}=800 \mathrm{~A}$	52586	52593
$\mathrm{In}=1000 \mathrm{~A}$	52587	52594
$\mathrm{n}=1250 \mathrm{~A}$	52588	52595
$\mathrm{n}=1600 \mathrm{~A}$	52589	52596
$\mathrm{ln}=2000 \mathrm{~A}$	52590	52597
$\mathrm{n}=2500 \mathrm{~A}$	53813	53814

Note: to be specified only in addition to the code of the automatic circuit-breaker.
To order the transformers separately, see page 9/50. For instructions, see page 9/51.

E4

$\ln =2000 \mathrm{~A}$	52598	52600
$\ln =3200 \mathrm{~A}$	52599	52601
Note: to be specified only in addition to the code of the automatic circuit-breaker.		
To order the transformers separately, see page 9/50. For instructions, see page 9/51.		

E4/f

$\ln =2000 \mathrm{~A}$	52602
$\ln =3200 \mathrm{~A}$	52603
Note: to be specified only in addition to the code of the automatic circuit-breaker.	
To order the transformers separately, see page $9 / 50$. For instructions, see page $9 / 51$.	

E6

$\mathrm{n}=3200 \mathrm{~A}$	52604	52606
$\mathrm{n}=4000 \mathrm{~A}$	52605	52607
$\mathrm{In}=5000 \mathrm{~A}$	53815	53816
Note: to be specified only in addition to the code of the automatic circuit-breaker. To order the transformers separately, see page $9 / 50$. For instructions, see page $9 / 51$.		

Neutral setting 100% In	43474

Note: to be specified only in addition to the code of the automatic circuit-breaker.

Ordering codes

SACE Emax accessories

SOR Test Unit - (1b)

E1/6

Undervoltage release - YU (2a)

$E 1 / 6$	24 V DC	38306
$E 1 / 6$	$30 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{DC}$	38307
$E 1 / 6$	$48 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{DC}$	38308
$E 1 / 6$	$60 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{DC}$	38309
$E 1 / 6$	$110 \ldots 120 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{DC}$	38310
$E 1 / 6$	$120 \ldots 127 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{DC}$	38311
$E 1 / 6$	$220 \ldots 240 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{DC}$	38312
$E 1 / 6$	$240 \ldots 250 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{DC}$	38313
$E 1 / 6$	$380 \ldots 400 \mathrm{~V} \mathrm{AC}$	38314
$\mathbf{E 1 / 6}$	$440 \ldots 480 \mathrm{~V} \mathrm{AC}$	38315

Electronic time-delay device for undervoltage release - D (2b)

$E 1 / 6$	$24 \ldots 30 V$ AC / DC	38316
$E 1 / 6$	$48 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{DC}$	38317
$E 1 / 6$	$60 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{DC}$	38318
$E 1 / 6$	$110 \ldots 127 \mathrm{~V}$ AC / DC	38319
$E 1 / 6$	$220 \ldots 250 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{DC}$	38320

Gearmotor for the automatic charging of the closing springs - M (3)

$E 1 / 6$	$24 \ldots 30 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{DC}$	38321
$E 1 / 6$	$48 \ldots 60 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{DC}$	38322
$E 1 / 6$	$100 \ldots 130 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{DC}$	38323
$E 1 / 6$	$220 \ldots 250 \mathrm{~V} \mathrm{AC} \mathrm{/} \mathrm{DC}$	38324

Note: supplied as standard with limit contact and microswitch to signal when the closing springs are charged (accessory 5 c).

Signalling for overcurrent releases tripped - (4a)

E1/6	Electrical signalling of releases tripped (*) (4a)	38338
E1/6	Mechanical signalling of releases tripped (4b)	38337

(*) Also order the mechanical signal

Electrical signalling of circuit-breaker open/closed - (5a)

E1/6	4 auxiliary contacts	38326 (a)
E1/6	4 auxiliary contacts for digital signals	50153
E1/6	10 auxiliary contacts (installed)	46523 (b)
E1/6	10 auxiliary contacts (not installed)	38327 (c)
E1/6	10 auxiliary contacts for digital signals	50152 (d)
E1/6	15 supplementary auxiliary contacts	43475 (e)
E1/6	15 supplementary auxiliary contacts (for withdrawable version)	48827 (e)
E1/6	15 supplementary auxiliary contacts for digital signals	50145 (e)
E1/6	15 supplementary auxiliary contacts for digital signals (for withdrawable version)	50151 (e)

Note: (a) order only for MS and MTP versions. Already included with automatic circuit-breakers
(b) available only mounted with automatic circuit-breakers. Cannot be used with PR112 and PR 113 releases
(c) available only for MS and MTP versions, or separately for automatic circuit-breakers. Cannot be used with PR112 and PR 113 releases.
(e) outside the circuit-breaker Order as an alternative to the various types of mechanical interlocks (accessory 10) and mechanical compartment door lock (accessory 8 e).

Ordering codes

SACE Emax accessories

> 1SDA0.....R1 3 Poli $\quad 4$ Poli

Electrical signalling of circuit-breaker
 racked-in/test isolated/racked-out - (5b)

E1/6	5 auxiliary contacts	38361	38361
E1-E2	10 auxiliary contacts	38360	43467
E3	10 auxiliary contacts	43468	43469
E4-E6	10 auxiliary contacts	43470	43470
E1/6	5 auxiliary contacts for digital signals	50146	50146
E4-6	10 auxiliary contacts for digital signals	50147	50148
E3	10 auxiliary contacts for digital signals	50147	50147
	10 auxiliary contacts for digital signals	50149	50150
Contact for signalling closing spring charged	- (5C)		
1SDA0.....R1			

Contact for signalling undervoltage release energized - (5d)

E1/6	1 normally-closed contact	38341
E1/6	1 normally-open contact	38340

Current transformer for neutral conductor outside the circuit-breaker - (6a)

E1-E2	$\mathrm{In}=250 \mathrm{~A}$		38269
E1-E2	$\mathrm{ln}=400 \mathrm{~A}$		38270
E1-E2	$\mathrm{ln}=800 \mathrm{~A}$		38271
E1-E2	$\mathrm{ln}=1000 \mathrm{~A}$		50079
E1-E2	$\mathrm{ln}=1250 \mathrm{~A}$		38272
E2	$\mathrm{ln}=1600 \mathrm{~A}$		38273
E2	$\mathrm{ln}=2000 \mathrm{~A}$		38274
E3	$\mathrm{ln}=250 \mathrm{~A}$		48952
E3	$\mathrm{ln}=400 \mathrm{~A}$		48953
E3	$\mathrm{ln}=800 \mathrm{~A}$		38277
E3	$\mathrm{In}=1000 \mathrm{~A}$		50084
E3	$\mathrm{In}=1250 \mathrm{~A}$		38278
E3	$\mathrm{ln}=1600 \mathrm{~A}$		38279
E3	$\mathrm{ln}=2000 \mathrm{~A}$		38280
E3	$\mathrm{ln}=2500 \mathrm{~A}$		38281
E3	$\mathrm{ln}=3200 \mathrm{~A}$		38282
E4	$\mathrm{ln}=2000 \mathrm{~A}$	lu $\mathrm{N}=2000 \mathrm{~A}$	48957
E4	$\mathrm{In}=3200 \mathrm{~A}$	lu $\mathrm{N}=2000 \mathrm{~A}$	38275
E4	$\mathrm{In}=4000 \mathrm{~A}$	lu $\mathrm{N}=2000 \mathrm{~A}$	38276
E4	$\mathrm{ln}=2000 \mathrm{~A}$	lu $\mathrm{N}=4000 \mathrm{~A}$	53098
E4	$\mathrm{ln}=3200 \mathrm{~A}$	lu $\mathrm{N}=4000 \mathrm{~A}$	53100
E4	$\mathrm{ln}=4000 \mathrm{~A}$	lu $\mathrm{N}=4000 \mathrm{~A}$	53102
E6	$\mathrm{In}=3200 \mathrm{~A}$	lu $\mathrm{N}=3200 \mathrm{~A}$	48958
E6	$\mathrm{ln}=4000 \mathrm{~A}$	lu $\mathrm{N}=3200 \mathrm{~A}$	38283
E6	$\mathrm{In}=5000 \mathrm{~A}$	lu $\mathrm{N}=3200 \mathrm{~A}$	38284
E6	$\mathrm{ln}=6300 \mathrm{~A}$	lu $\mathrm{N}=3200 \mathrm{~A}$	38285
E6	$\mathrm{In}=3200 \mathrm{~A}$	lu $\mathrm{N}=6300 \mathrm{~A}$	53103
E6	$\mathrm{In}=4000 \mathrm{~A}$	lu $\mathrm{N}=6300 \mathrm{~A}$	53104
E6	$\mathrm{In}=5000 \mathrm{~A}$	lu $\mathrm{N}=6300 \mathrm{~A}$	53105
E6	$\mathrm{ln}=6300 \mathrm{~A}$	lu $\mathrm{N}=6300 \mathrm{~A}$	53106

Note: lu N refers to the maximum neutral conductor capacity. The current transformer for the external neutral must be chosen to match the rated current In of the circuit-breaker current transformers.

Homopolar toroid for the main power supply earthing conductor - (6b)

$E 1 / 6$	$I n=100 A$	48067
$E 1 / 6$	$I n=250 A$	48068
$E 1 / 6$	$I n=400 A$	48069
$E 1 / 6$	$I n=800 A$	48070

Mechanical operation counter - (7)
E1/6 38345

Lock in open position - (8a)

key locks		
E1/6	for 1 circuit-breaker (different keys)	38350
E1/6	for sets of circuit-breakers (same keys N.3004222)	38346
E1/6	for sets of circuit-breakers (same keys N.0025431)	38347
$\mathbf{E 1 / 6}$	for sets of circuit-breakers (same keys N.0233424)	38348
E1/6	for sets of circuit-breakers (same keys N.0335452)	38349
padlocks		
$\mathbf{E 1 / 6}$		38351 (a)

Note: (a) Order as an alternative to the protective cover for opening and closing pushbuttons (accessory 9a)

Circuit-breaker lock in racked-in/test isolated/racked-out position - (8b)

E1/6	for 1 circuit-breaker (different keys)	38356
E1/6	for sets of circuit-breakers (same keys N.3004222)	38352
E1/6	for sets of circuit-breakers (same keys N.0025431)	38353
E1/6	for sets of circuit-breakers (same keys N.0233424)	38354

Accessory for lock in test isolated/racked-out position - (8c)
Note: Order to complete the circuit-breaker lock in racked-in/test isolated/racked-out position (accessory 8b)

Accessory for shutter padlock device - (8d)
E1/6

Ordering codes

SACE Emax accessories

Mechanical compartment door lock - (8e)
E1/6 45039

Note:- Order with interlock for fixed circuit-breaker/moving part of withdrawable circuit-breaker (accessory 10.2)
for fixed version, also order the interlock plate 10.4
order as an alternative to cable interlocks (accessory 10.1), and to the 15 supplementary auxiliary contacts (accessory 5 a).

Protection cover for opening and closing pushbutons - (9a)	
E1/6	38343
Note: Order as an alternative to the padlock device in open position (accessory $8 a)$.	

IP54 Door protection - (9b)
E1/6 38344

Sealable relay protection - (9c)
E1/6 48721

Mechanical interlock - (10)

For instructions see pages 9/52 and 9/53.
10.1 Interlock cables for fixed circuit-breakers or fixed parts

E1/6	A - horizontal	38329
E1/6	B - horizontal	38330
E1/6	C - horizontal	38331
E1/6	D - horizontal	38332
E1/6	A - vertical	38333
E1/6	B - vertical	38334
E1/6	C - vertical	D - vertical

Note: Order one type of cable for each interlock. Order on one of the fixed circuit-breakers or on one of the fixed parts.
1SDA0....R1
3 Poles 4 Poles
10.2 Interlock for fixed circuit-breaker/moving part of withdrawable circuit-breaker

E1-E2	38366	38366
E3	38367	38367
E4	38368	43466

Note: Order one accessory for each fixed circuit-breaker/moving part of withdrawable circuit-breaker.
10.3 Interlock for fixed circuit-breaker/fixed part of withdrawable circuit-breaker

E1/6	Interlock A/B / D	38364
E1/6	Interlock C	38365
Note: Order one accessory for each fixed circuit-breakerffixed part of withdrawable circuit-breaker.		
$\mathbf{1 0 . 4}$ Interlock plate for fixed circuit-breaker	38358	
E1/6		

PR010/T Test and programming unit
ER010T

PR020/K Signalling unit
E1/6
PR020/K

Ordering codes

Microprocessor-based releases and current transformers (when supplied separately)

Microprocessorbased releases

PR111/P
PR112/P
PR113/P
1SDA0.....R1
1SDA0.....R1
1SDA0.....R1

Modbus ${ }^{\circledR}$ RTU		
LSI Modbus	52651	52656
LSIG Modbus	52652	
Note: codes to use when ordering the releases separately, not mounted on the circuit-breaker		

LON ® ${ }^{\circledR}$ Talk			
LSI Lon	52653		
LSIG Lon	52654		
Note: codes to use when ordering the releases separately, not mounted on the circuit-breaker			
		1SDA0.....R1 3 Poles	4 Poles
E1-E2	$\mathrm{ln}=250 \mathrm{~A}$	38014	38020
E1-E2	$\mathrm{ln}=400 \mathrm{~A}$	38015	38021
E1-E2	$\mathrm{ln}=800 \mathrm{~A}$	38016	38022
E1-E2	$\mathrm{ln}=1000 \mathrm{~A}$	50072	50566
E1-E2	$\mathrm{ln}=1250 \mathrm{~A}$	38017	38023
E2	$\mathrm{ln}=1600 \mathrm{~A}$	38018	38024
E2	$\mathrm{ln}=2000 \mathrm{~A}$	38019	38025
E3	$\mathrm{ln}=250 \mathrm{~A}$	48741	48742
E3	$\mathrm{ln}=400 \mathrm{~A}$	48743	48744
E3	$\mathrm{ln}=800 \mathrm{~A}$	38026	38032
E3	$\mathrm{ln}=1000 \mathrm{~A}$	50074	50567
E3	$\mathrm{ln}=1250 \mathrm{~A}$	38027	38033
E3	$\mathrm{ln}=1600 \mathrm{~A}$	38028	38034
E3	$\mathrm{ln}=2000 \mathrm{~A}$	38029	38035
E3	$\mathrm{ln}=2500 \mathrm{~A}$	38030	38036
E3	$\mathrm{ln}=3200 \mathrm{~A}$	38031	38037
E4	$\mathrm{ln}=2000 \mathrm{~A}$	38038	38041
E4	$\mathrm{ln}=3200 \mathrm{~A}$	38039	38042
E4	$\mathrm{ln}=4000 \mathrm{~A}$	38040	38043
E4/f	$\mathrm{ln}=2000 \mathrm{~A}$	-	48733
E4/f	$\mathrm{ln}=3200 \mathrm{~A}$	-	48734
E4/f	$\mathrm{ln}=4000 \mathrm{~A}$	-	48735
E6	$\mathrm{ln}=3200 \mathrm{~A}$	38044	38048
E6	$\mathrm{ln}=4000 \mathrm{~A}$	38045	38049
E6	$\mathrm{ln}=5000 \mathrm{~A}$	38046	38050
E6	$\mathrm{ln}=6300 \mathrm{~A}$	38047	38051
E6/f	$\mathrm{ln}=5000 \mathrm{~A}$	-	50838
E6/f	$\mathrm{ln}=6300 \mathrm{~A}$	-	50839

Ordering codes
Order examples

1) Additional codes

Notes for examples 1 and 2
The codes for terminal kits indicate 3 or 4 pieces (for mounting on top or bottom terminals)
To convert a complete circuitbreaker, order 2 identical kits or 2 different kits for mixed terminals. For mixed solutions, the first code indicates the 3 or 4 terminals to be mounted above, while the second indicates the 3 or 4 terminals to be mounted below.

Instructions for ordering

Standard version Emax series circuit-breakers are identified by means of commercial codes that may be modified by adding the following variables:

- Codes for Terminal Kits for fixed circuit-breakers (other than rear horizontal)
- Additional codes for Current transformer settings (for current values below rated)
- Additional codes for Protection releases with Dialogue Unit
- Additional codes for Special version for rated service voltages up to 1000V AC

The aforementioned types of variables may also be requested on the circuit-breaker itself.
The additional codes indicate variables that are not in addition to, but in replacement of the specifications of the basic circuit-breaker.
That is why these commercial codes may be ordered solely in combination with the circuitbreaker, and not as separate parts.
For releases (which already include a Dialogue unit) and Current transformers ordered as spare parts for replacement by the customer, see the coding section "Microprocessor-based releases and current transformers (when ordered separately)".

Example n. 1
Codes for Terminal Kits for fixed circuit-breakers (other than rear horizontal)
Emax E3N 3-pole fixed with Vertical rear terminals (VR)
1SDA040790R1 E3N 3200 PR112/P-LSI-In=3200A 3p F HR
1SDA038054R1 KIT 1/2 3p F HR>F VR E3
1SDA038054R1 KIT 1/2 3p F HR>F VR E3

Example n. 2
Emax E3N 3-pole fixed with Vertical rear (VR) upper and Front (F) lower terminals
1SDA040790R1 E3N 3200 PR112/P-LSI-In=3200A 3p F HR
1SDA038055R1 KIT 1/2 3p F HR>F VR E4
1SDA038064R1 KIT 1/2 3p F HR>F F E3

Example n. 3
Additional codes for Current transformer settings (for current values below rated)
Emax E3N 3200 3-pole fixed with $\mathbf{I n}=2000 \mathrm{~A}$
1SDA040790R1 E3N 3200 PR112/P-LSI-In=3200A 3p F HR
1SDA052590R1 Additional code for Current transformer and cables for E3-In 2000A - 3 poles

Example n. 4

Additional codes for Protection releases with dialogue unit

Emax E3N 3200 3-pole fixed with PR112/PDM LSI

1SDA040790R1 E3N 3200 PR112/P-LSI-In=3200A 3p F HR
1SDA052659R1 Additional code for PR112/PDM LSI microprocessor-based release with Modbus dialogue

Example n. 5
Additional codes for Special version for rated service voltages up to 1000V AC
Emax E3H/E 2000 3-pole fixed (version up to 1000V AC)
1SDA041729R1 E3H 2000 PR111/P-LI-In=2000A 3p F HR
1SDA048534R1 Emax E3H/E20 special version circuit-breaker 1000V AC

Ordering codes

Order examples

2) Mechanical

interlocks

The examples beside show a general guide to the types of accessories that must be ordered for the various versions of circuit-breakers and type of interlock:

Instructions for ordering

All mechanical interlocks for any SACE Emax circuit-breaker is made up of various components, each of which has been coded to ensure the greatest possible flexibility of the accessory.

The accessory components are described below

- Cables for interlock (Ref. 10.1 page 9/48)

One type of cable must be ordered for each interlock.
Flexible cables must be fastened to the fixed circuit-breakers or fixed parts (in the case of withdrawable circuit-breakers) and to the switchboard structures using adhesive plates and self-locking bands.

- Interlock for fixed circuit-breaker/moving part for withdrawable circuit-breaker (Ref. 10.2 page 9/48)
This is the accessory that must be installed on the moving part of the withdrawable circuitbreaker or on the side of the fixed circuit-breaker.
This accessory must be ordered for each fixed circuit-breaker and for each moving part of the withdrawable circuit-breaker.
- Interlock for fixed circuit-breaker/fixed part of withdrawable circuit-breaker (Ref. 10.3 page 9/48)
This is the accessory that must be installed on the fixed part of the withdrawable circuit-breaker or on the interlock plate of the fixed circuit-breaker (which simulates the fixed part of the withdrawable circuit-breaker).
This accessory must be ordered for each fixed circuit-breaker and for each fixed part of the withdrawable circuit-breaker.
- Interlock plate for fixed circuit-breaker (Ref. 10.4 page 9/48)

It must be requested for each fixed circuit-breaker present in the interlock.

For each circuit-breaker used in the interlock, depending on the type of circuit-breaker, the accessories listed in the figures below must be ordered.
A single group of cables ("Cables for interlock" ref. 10.1) must be ordered for each interlock. In particular, either a fixed circuit-breaker or one of the fixed parts must be specified.

1. Interlock between two fixed circuit-breakers

10.1
10.2
10.3
10.4
:---
10.2
10.3
10.4

2. Interlock between two withdrawable circuitbreakers

10.1
10.2
10.3
10.4
:---
10.2
10.3
10.4
:---
10.2
10.3
10.4

3. Interlock between three fixed circuit-breakers

4. Interlock between three withdrawable circuitbreakers

Example n .6
An interlock is to be made between two Type A circuit-breakers. In particular, the following are to be interlocked:

- a SACE E3 3-pole fixed circuit-breaker
- with a SACE E4 4-pole withdrawable circuit-breaker;
the circuit-breakers are placed horizontally in the switchboard.
Below are listed the codes to use when ordering:

Example n. 7

Here, an interlock is desired between three Type C vertical circuit-breakers with the following circuit-breakers:

- SACE E2 3-pole withdrawable circuit-breaker
- SACE E3 3-pole fixed circuit-breaker
- SACE E6 4-pole fixed circuit-breaker

In this case, use the following codes when ordering:

$\begin{aligned} & \text { Pos } \\ & 100 \\ & \hline \end{aligned}$	Code	Description
	SACE E2 moving	part of withdrawable circuit-breaker
	1SDA038366R1	Interlock for fixed circuit-breaker/moving part of withdrawable circuit-breaker E1-E2
200	SACE E2 Fixed part	
	1SDA038335R1	Type C interlock cables for fixed circuit-breakers or fixed parts - vertical E1/6
	1SDA038365R1	Interlock for fixed CB / fixed part of withdrawable CB - Type C Interlock E1/6
300	SACE E3 fixed circuit-breaker	
	1SDA038367R1	Interlock for fixed CB / moving part of withdrawable CB - Interlock E3
	1SDA038365R1	Interlock for fixed CB / fixed part of withdrawable CB - Type C Interlock E1/6
	1SDA038358R1	Interlock plate for fixed circuit-breaker E1/6
400	SACE E6 fixed circuit-breaker	
	1SDA038369R1	Interlock for fixed CB / moving part of withdrawable CB - Interlock 4p E6
	1SDA038365R1	Interlock for fixed CB / fixed part of withdrawable CB - Type C Interlock E1/6
	1SDA038358R1	Interlock plate for fixed circuit-breaker E1/6

[^0]: Three-pole circuit-breaker with PR111, PR112/P, PR112/PD, PR113P, PR113/PD microprocessor-based release and

[^1]: lu Rated uninterrupted current of the circuit-breaker
 In Rated current of the electronic release current transformers
 Icu Rated ultimate short-circuit breaking capacity
 Icw Rated short-time withstand current
 AC AC applications
 DC DC applications
 /MS Switch-disconnector
 /E Automatic circuit-breaker for applications up to 1000 V
 /E MS Switch-disconnector for applications up to 1000 V
 CS Sectionalizing truck
 MTP Earthing switch
 MT Earthing truck

[^2]: Fixed parts.................... page 9/40

